EX-BIM 가이드라인

ver. 1.0

한국도로공사, 한국BIM학회

2016.06
서 문

3차원 정보모델 기반의 건설 프로세스와 관련 응용 기술을 한국도로공사의 설계, 시공, 운영 및 유지관리에 적용할 수 있도록 하는 편입으로 하는 과업을 수행하면서 BIM (Building Information Modeling) 도입의 전략적 목표를 설정하고 추진 과제를 도출하는 로드맵을 수립하였다. 이 로드맵에 근거하여 발주자로서 BIM 을 도입하고 실무에 적용하기 위한 지침서를 개발하였다. 이 가이드라인은 현재의 기술수준과 한국도로공사 설무자의 업무 요구사항을 반영한 ver. 1.0으로 향후 지속적으로 개선될 것이다.

고속도로 분야의 설계, 시공, 유지관리 분야의 세계적인 경쟁력을 확보하기 위해 BIM 기반으로 새롭게 대두되는 기술 수준을 고려하고 국내외 여건을 반영한 가이드라인을 제시하기 위하여 노력하였다. 발주자는 설계사나 시공사와 다른 업무 환경과 담당 업무, 그리고 제반 규정과 절차를 갖고 있기 때문에 이를 가이드라인에 최대한 반영하여야 한다. 발주자 정보요구사항 (EIR: Employer‘s Information Requirement)은 로드맵 도출 과정에서 수행한 인터뷰를 통해서 파악하였고 이를 근거로 BIM 기반의 고속도로 발주와 성과품 관리, 유지관리 활용을 위해 필요한 사항들을 정리하였다.

해외의 사례를 보더라도 BIM 기술의 성숙도와 내외부의 기술 생태계의 현황을 고려해서 도입 수준을 단계별로 설정해야 한다. 특히, 도입 초기에 발주자가 명확하게 BIM 모델링 방법, 절차, 정보 요구사항을 제시하여야 기업체의 기술자들이 가지는 시행착오를 줄일 수 있고 체계적인 준비를 할 수 있다. 2차원 도면 문서 기반의 업무에서 3차원 정보 모델 기반으로 전환하기 위한 초기의 노력은 이후의 성과에 상당한 영향을 미쳐진다. 건설분야의 전반적인 생산성을 높이고 원가를 절감하고 공기 및 안전을 관리하는데 BIM 기술이 기여하기 위해서는 적응 분야 및 목적으로 명확하게 설정해야 한다. BIM 발주에서 발주자가 제시하는 요구사항들은 최소한의 목적과 성과물 요구사항에 국한되어야 하고 기업체가 이에 기반하여 구체적인 실행계획서 (BEP: BIM Execution Planning)를 작성하고 업무를 수행하는 방식으로 진행되어야 한다.

고속도로 사업의 설계를 위해 설계가 BIM 모델을 생성하고 활용하는 방안은 민간의 자율적인 선택에 맡기고 그 성과품에 대해서만 요구사항을 제시하는 것이 바람직하다. 발주자와의 설계관리, 사업관리 차원에서 필요한 활용 방안은 이 가이드라인에서 다루도록 하였다. 제출된 BIM 모델과 이에 연관된 설계 성과품을 기반으로 개선된 관리 능력을 갖추게 된다. 고속도로 사업의
초기부터 완성 후 유지관리 단계에 이르기까지 사업에 참여하는 주체들 간의 의사소통의 수단으로 3차원 모델을 활용하고 실시간 협업과 필수 정보 공유는 세계적인 사업 관리 능력을 갖추기 위해 필수적인 사항이다. 기존의 사업관리 방식에서 BIM 기반으로 진행할 때 가장 큰 변화중 하나는 투명성과 보도 가능성이 있다. 발주자가 사업의 목표를 설정하고 이 목표를 달성하기에 적절한 설계 성과물을 도출되었는지를 평가할 때 BIM 모델은 정확성과 효율성을 측면에서 이전보다 훨씬 개선된 방향을 제시할 수 있다. 도면과 물량 산정의 적정성, 난이도가 있거나 위험성이 있는 사업구간 혹은 공정에 대한 시공성 검토, 민원의 소지가 높은 사항들에 대한 사전 검토 등의 주요 목표를 설정하고 사업 초기에 이를 해소하여 설계 변경 최소화 등의 효과를 얻을 수 있을 것이다. BIM 기반의 고속도로 사업의 수행을 통해 한국도로공사는 고속도로 사업의 전생애주기에서 설계 기술을 축적하는 시스템 엔지니어링 수준의 기술력을 가질 수 있고 이를 통해 국내뿐 아니라 해외 건설시장에서 PMC 역량을 높일 수 있는 계기가 될 것으로 기대된다. 끝으로 EX-BIM 설계 표준모델 구축 연구를 함께 수행한 도로공사 내부 연구진 및 한국BIM학회의 외부 연구진의 적극적인 참여와 도움을 주신 분들에게 감사드립니다.

<table>
<thead>
<tr>
<th>참여 집필진</th>
<th>이 해록</th>
<th>한국도로공사 설계처 팀장</th>
</tr>
</thead>
<tbody>
<tr>
<td>내부연구진</td>
<td>박 종서</td>
<td>한국도로공사 설계처 차장</td>
</tr>
<tr>
<td></td>
<td>조 병나</td>
<td>한국도로공사 설계처 대리</td>
</tr>
<tr>
<td></td>
<td>유호인</td>
<td>한국도로공사 건설처 차장</td>
</tr>
<tr>
<td></td>
<td>강지윤</td>
<td>한국도로공사 건설처 대리</td>
</tr>
<tr>
<td></td>
<td>이병화</td>
<td>한국도로공사 도로처 차장</td>
</tr>
<tr>
<td></td>
<td>한지욱</td>
<td>한국도로공사 도로처 대리</td>
</tr>
<tr>
<td></td>
<td>조준식</td>
<td>한국도로공사 재난안전처 차장</td>
</tr>
<tr>
<td></td>
<td>김호원</td>
<td>한국도로공사 재난안전처 대리</td>
</tr>
<tr>
<td></td>
<td>김민철</td>
<td>한국도로공사 정보처 차장</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>외부연구진</th>
</tr>
</thead>
<tbody>
<tr>
<td>심창수</td>
</tr>
<tr>
<td>이일수</td>
</tr>
<tr>
<td>이진우</td>
</tr>
<tr>
<td>이지훈</td>
</tr>
<tr>
<td>정준</td>
</tr>
<tr>
<td>임성순</td>
</tr>
<tr>
<td>이름</td>
</tr>
<tr>
<td>----------------------</td>
</tr>
<tr>
<td>이 세화</td>
</tr>
<tr>
<td>이 선우</td>
</tr>
<tr>
<td>김 남일</td>
</tr>
<tr>
<td>박 만우</td>
</tr>
<tr>
<td>이 황명</td>
</tr>
<tr>
<td>김 경주</td>
</tr>
<tr>
<td>신 재철</td>
</tr>
<tr>
<td>김 용한</td>
</tr>
<tr>
<td>최 재웅</td>
</tr>
<tr>
<td>김 진만</td>
</tr>
<tr>
<td>장 형수</td>
</tr>
<tr>
<td>송 현혜</td>
</tr>
<tr>
<td>김 동욱</td>
</tr>
</tbody>
</table>

목 차

1. 적용 범위 및 실행계획 ... 1
 1.1 적용 범위 ... 1
 1.2 BIM 추진계획 및 파업지침서 ... 2
 1.3 BIM 실행계획, 실행계획서 및 실행절차 9
 1.4 BIM 적용을 위한 지원사항 ... 21
 1.5 BIM 성과품의 유의사항 및 권한 ... 23

2. 용어 정의 .. 26

3. 명칭 및 분류체계 ... 30
 3.1 명칭 ... 30
 3.2 분류 체계 ... 31

4. BIM 활용공종 및 모델 수준정의 ... 37
 4.1 BIM 활용 공종 ... 37
 4.2 단계별 모델 수준 (LOD) ... 42
 4.3 BIM 모델 정보 요구사항 정의 ... 49

5. 설계단계의 BIM 적용 ... 53
 5.1 설계 BIM 계획 ... 53
 5.2 설계단계 BIM 활용 ... 56
 5.3 BIM 성과물 정의 .. 67
 5.4 BIM 품질 관리 ... 77

6. 시공단계의 BIM 적용 ... 80
 6.1 사업관리 BIM 계획 ... 80
 6.2 BIM 공정관리 ... 84
6.3 BIM 안전관리 ... 99
6.4 안전관리 활용 ... 101
6.5 위치기반 안전관리 ... 105
6.6 UAV활용 안전관리 ... 106
6.7 BIM기반 지장물 검토 ... 107

7. 유지관리 단계의 BIM 적용 .. 108
 7.1 준공 BIM 모델 ... 108
 7.2 유지관리 BIM 활용 ... 110

8. 참고문헌 .. 112

부록 I BIM 실행계획서 양식 .. 120

부록 II 도로분야 작업분류체계(WBS) 코드집 128
1. 적용 범위 및 실행계획

1.1 적용 범위

(1) 이 가이드라인은 한국도로공사에서 수행하는 고속도로 건설사업의 기본설계단계, 실시설계단계, 시공단계, 유지관리단계의 업무를 3차원 정보모델 기반의 기술인 BIM (Building Information Modeling)을 활용하기 위한 계획 및 실행에 적용된다.

(2) 한국도로공사의 업무 절차와 성과품 체계를 고려한 EX-BIM 기반의 설계, 시공 및 사업관리, 유지관리 업무 수행 시 처리부서 및 관련부서는 이 가이드라인에 따라 업무를 수행한다.

(3) 이 가이드라인에 준하는 전산설계도서(설계도면 및 시방서, 계산서, 보고서 등의 기술문서)는 다음과 같으며 이외의 설계도서의 작성 및 납품 절차/점검/승인/납품은 별도의 지침서, 과업지시서, 계약조건 등을 준용한다.
 - 타당성조사 및 기본설계, 실시설계 등 설계시행에서 발생되는 설계도서
 - 건설공사 업무에서 발생되는 설계도서
 - 시설물 유지관리 과정에서 발생하는 설계도서

[해설]

(1) 기존에 제시된 BIM 가이드라인은 대부분 활용 주체가 혼재되어 있거나 민간기업의 업무에 대한 내용이 주를 이루고 있다. 이 가이드라인은 한국도로공사가 향후 업무에 BIM을 도입하기 위해 참고할 필요가 있는 기술 및 절차를 대상으로 한다. 기존의 사업 수행단계별 참여 조직, 성과물, 업무 절차 및 규정 등이 3차원 정보모델을 도입함으로써 변화되어야 하는 사항들을 설계, 시공, 유지관리단계로 구분하여 제시한다. 기존 업무 절차의 개선사항에 대한 인터뷰 등을 수행하여 제시한 가이드라인으로 EX-BIM이라는 명칭은 Expressway-BIM을 줄여서 사용한 것이다.

(2) BIM은 정보의 통합과 공유, 절차의 체계화가 기본적인 철학이고 이를 통해 생산성, 원가절감, 공기 관리를 효율적으로 할 수 있도록 한다. 따라서 고속도로 사업의 각 단계별 업무 담당자가 정보 전달 체계가 변경되
는 부분과 활용 가능성에 대한 파악을 하는 것이 매우 중요하다. 민간 기업과의 협업에서도 납품 및 승인 절차 이전에 의사소통을 통하여 원활한 진행이 가능하도록 할 수 있는 변화가 요구된다. 이 분야의 관련 기술이 변화가 빠르고 다양한 솔루션과 장치가 개발되고 있기 때문에, 활용시에는 적용 목적에 부합하는 원칙을 지키면서 유연성을 가지고 접근해야 한다.

(3) 이 가이드라인에서 다루는 것은 BIM 모델 작성을 이에 따른 BIM 성과품에 관한 것이다. 영국, 미국, 싱가포르, 홍콩의 관련 가이드라인 및 매뉴얼을 참고할 수 있다.

이 가이드라인과 관련한 관련근거, 기준 및 규격은 다음과 같다.

- 국제표준
 - ISO/PAS 16739 IFC (Industry Foundation Classes)
 - ISO/DIS 29845-1 Building Information Models - Information Delivery Manual - Part 1 : Methodology and format

- 건설CALS/EC 단체표준
 - 건설CALS/EC 전자도면 작성표준
 - 건설CALS/EC 전자문서 표준
 - 건설문야 도면정보 교환표준

- 법률, 국가고시 및 지침
 - 건설기술개발 및 관리 등에 관한 운영규정 (국토교통부)
 - 건설정보분류체계 적용기준 (국토교통부)

1.2 BIM 추진계획 및 과업지침서 (PEG: Project Execution Guide)

(1) 발주자는 BIM을 도입하고자 하는 사업에 대하여 상세한 BIM 추진계획을 포함한 ‘BIM 과업지침서’를 작성해서 과업지시서에 포함시켜야 한다. 사업 전 과정에서 각 참여자와 BIM 사업 추진계획에 따라 공통의 목표와 도입 절차를 숙지해야하기 때문이다. 이 지침서에는 BIM 적용 법위, 각 BIM 업무의 절차 정의, 정보를 교환하는 시기와 내용을 포함해야 하고 이를 위한 제반 여건을 설명해야 한다.
(2) 목표 설정은 전체적인 사업 목적에서 공기 단축, 사업 관리 효율성, 품질 향상, 설계변경 최소화 혹은 사업비 절감, 유지관리를 위한 체계 적인 정보 획득 등으로 우선 설정될 수 있다. 초기 적응 단계에서는 발주자의 역량 강화를 목표로 설정할 수 있고 민간 기업의 협업 절차의 개선도 가능한 목표로 설정할 수 있다. 사업의 성격을 고려하여 측정 가능한 형태의 목표를 설정하면 그 목표를 달성하기 위한 BIM 활용 방안이 세부적으로 정의된다. BIM을 적용하기 위해서 추가로 발주자, 민간 기업이 투자해야 하는 비용을 고려하여 그 효과가 장·단기적으로 확보될 것으로 예상되는 적용 방안을 도출하는 것이 중요하다.

(3) 사업에 BIM을 적용하기 위한 BIM 과업지침서는 실제 사업에 참여하게 되는 부서 및 담당자들이 초기에 협의를 해서 계획을 수립하고 작성해야 한다. 사업 진행과정에서 설정된 목표가 달성되었는지를 평가하고 우수 사례를 축적하고 전파한다.

[해설]
(1)에 대하여: 고속도로 사업에 BIM을 도입하기로 결정하면 발주자는 ‘BIM 과업지침서(PEG)’를 작성해서 과업지시서에 포함시켜야 한다. 이 과업지침서의 주요 목표는 다음과 같다.
- 모든 참여자들이 사업에 BIM을 도입하는 전략적 목표를 이해하고 공감할 수 있다.
- BIM 도입을 위해 각자의 역할과 책임을 참여 구성원 모두가 이해할 수 있다.
- 각 구성원의 업무와 일반적인 업무절차에 적합한 실행계획을 수립할 수 있다.
- 의도한 목적에 맞게 BIM을 도입하기 위해 필요한 추가적인 자원, 교육 등을 준비할 수 있다.
- 사업에 참여할 사람들에게 절차를 설명해서 참고할 수 있도록 한다.
- 모든 사업참가자들이 각자의 의무사항을 인지하도록 계약 사항을 정의하는데 활용할 수 있다.
- 사업 진행 기간 동안 진행사항을 점검할 수 있는 기본적인 추진 계획을 제공한다.
BIM 과업지침서의 작성 절차는 아래와 같고 각 단계별로 문서화하여 사업을 진행하는 동안 참여자들이 공유할 수 있도록 해야 한다.

(2)에 대하여: BIM 목표 설정과 그에 따른 활용 방안은 발주자가 발주시 과업지침서 혹은 기타 문서에 명시하여 제시하면, 사업 참여자가 이에 따른 구체적인 계획과 방법을 수립하여 계약하고 수행하게 된다. BIM 과업을 수행한 경험이 있는 참여자들의 인터뷰를 통해 도출된 활용방안은 아래와 같이 제시되어 있는데 이를 참고하여 발주자가 사업 초기에 선택적으로 적용 범위를 설정할 수 있다. 구체적인 활용 방안을 도출할 때는 유지관리단계에 대한 고려를 우선 시작해야 하고 시공, 설계, 계획단계로 진행하는 것이 바람직하다. 각 활용 방안의 중요도를 평가하고 이를 구체적으로 수행할 주체를 발주자, 시공사, 설계사로 구분하여 결정해야 한다.
<table>
<thead>
<tr>
<th>활용방안</th>
<th>활용 가치</th>
<th>필요한 자원</th>
</tr>
</thead>
<tbody>
<tr>
<td>예방적 유지관리</td>
<td>• 인벤토리/이력 관리, 점검 등 유지관리 생산성 증대, 중합적 평가 능력</td>
<td>• 설계검토 소프트웨어 • 유지관리 시스템 수정 • 3차원 모델 활용 시각화 시스템 • 3차원 모델 활용 능력 교육</td>
</tr>
<tr>
<td>자산관리</td>
<td>• 사용자 매뉴얼, 장비 및 제품 성 적서 관리, 시설물 상태 평가, 자산의 운영/상태/보수보강 등 이력관리, 정확한 자산 인벤토리 관리, 모델 업데이트</td>
<td>• 3차원 모델 및 이에 연계된 자산관리시스템 • 3차원 모델 활용 교육</td>
</tr>
<tr>
<td>공간관리</td>
<td>• 사업 현장의 필요 부지의 할당 및 관리 • 공간 활용 계획 지원 • 4D 활용으로 공간 중복 해소 및 시공성 검토 개선 • 안전관리 개선</td>
<td>• 3차원 모델 • 관리 소프트웨어</td>
</tr>
<tr>
<td>재난관리</td>
<td>• 실시간으로 관리 자산에 대한 관찰, 소방, 안전관리부서에 3차원 정보 제공 • 비상상황 대처 능력 개선 • 관련 기관에 정보 서비스 제공</td>
<td>• 3차원 가상모델 • 재난 상황 대처 매뉴얼 및 연계 시스템 • 3차원 시각화 및 연계시스템</td>
</tr>
<tr>
<td>이력 모델링</td>
<td>• 확장, 보수/보강 등 변경사항 반영 • 변경에 따른 순인 절차 개선 • 신속한 절차를 통해 리스크, 비용, 법적 제한에 대한 분쟁 사전 해결</td>
<td>• 3차원 모델 • 모델 업데이트를 위한 교육</td>
</tr>
<tr>
<td>가상 복업 (Mock-up)</td>
<td>• 복잡한 구조물 및 시설물의 시공성 개선 • 시공 생산성 개선 • 시공 중 안전 관리 향상</td>
<td>• 3차원 모델링 • 간섭검토 소프트웨어 • 3차원 모델기반 설계검토 및 시공성 검토 능력 교육</td>
</tr>
<tr>
<td>디지털 제작</td>
<td>• 부재의 디지털 기술 기반 제작 • 정밀 제작 및 시공오차 축소 • 시공 생산성 증대</td>
<td>• 3차원 모델링 • 제작 장비 및 방법</td>
</tr>
</tbody>
</table>

(표계속)
활용방안	활용 가치	필요한 자원
3차원 공사관리 및 계획 | • GIS 기반의 BIM 솔루션을 통한 최적 입지 선정 검토
• 3차원 시공 모델을 통한 크레인 배차 운영 등 오류 사전 제거
• 사무실과 현장 실무자와의 의사 소통개선
• 언어 장벽 해소 (해외근로자) | • 3차원 모델링
• GIS 소프트웨어
• 크레인 등 장비 운영 시뮬레이션
3차원 간섭 조정 | • 모델 기반 간섭 및 공종간 조정
• 현장에서의 공정간 상호간섭 사전제거
• 생산성 확대
• 설계 변경 최소화
• 공기단축
• 준공도서 및 모델 정확성 개선 | • 3차원모델링
• 모델 검토 소프트웨어
• 모델 기반 간섭 검토 능력 교육
3차원 모델링 | • 설계단계에서의 투명성 제고
• 설계, 비용, 공기에 대한 품질관리 개선
• 설계 결과의 시각화 개선
• 사업 참여자간의 의사소통 개선 | • 3차원모델링
• 모델링 소프트웨어
• 협업 도구 및 활용 교육
공학적 해석 | • 구조해석, 에너지 해석 등 연계 검토 시간 및 정확성 개선
• 설계회사의 전문성 및 서비스 개선
• 설계 변경에 따른 생산성 개선
• 최적의 설계안 도출 가능성 개선 | • 3차원모델링
• 공학적 해석 소프트웨어
• 활용 기술 교육
친환경성 평가 | • 설계 검토 및 친환경 검토 절차 시간 단축
• 의사소통 개선으로 환경문제 해결을 위한 재설계 노력 감소
• 재료 사용 효율화 및 사업비 효율 개선
• 에너지 및 공간계획을 통한 시설물 성능 최적화 | • 3차원모델링
• 환경 정보

(표계속)
<table>
<thead>
<tr>
<th>활용방안</th>
<th>활용 가치</th>
<th>필요한 자원</th>
</tr>
</thead>
</table>
| 설계 검토 | • 설계 품질에 대한 검토 효율성 개선
• 설계 대안 검토 다양성 및 후속 절차 효율성 개선
• 시공오차 등을 고려한 간섭검토
• 가상공간에서 시설물 미관검토 및 배치 검토
• 설계단계의 의사소통 효율화 | • 3차원 모델
• 설계 검토 소프트웨어
• 협업을 위한 절차 및 소프트웨어 |
| 공정 계획 (4D 모델링) | • 사업 참여자들의 공정 이해도 증진 및 핵심 공정 파악
• 대한 공정별 실시간 평가
• 인력, 장비, 재료 수급을 동시에 검토하여 공기 및 비용 관리
• 작업 공간 중복 사전 해소
• 민원 대응
• 사업 진행 실시간 모니터링 | • 3차원 모델링
• 공정관리 소프트웨어
• 4D 모델링 소프트웨어 |
| 원가 계산 | • 주요수량의 정확한 산정 및 설계 변경 시 신속한 검토
• 설계 절차 진행시 목표 사업비 관리 개선
• 개선된 사업 및 공사 요소들의 시각적 표현을 통한 원가계산
• 발주자의 의사결정 지원
• 설계 대안 검토 다양성 및 실질 적인 VE 검토
• 원가 계산 생산성 증대 | • 모델 기반 전적 소프트웨어
• 3차원 모델링
• 비용 데이터 |
| 현황 모델링 | • 사업부지 및 기존 시설물 모델링을 통한 문서화
• 3차원 설계 조정작업을 위한 모델 활용
• 기존 시설물 현황 및 상태 디지털화
• 위치 정보 제공 | • 3차원 모델링
• 3차원 레이저스캐너
• 포인트클라우드 기반 역설계 기술 |
위 사항에 따른 작성은 아래의 작성 내용을 활용하여 진행한다. 사업 시작 초기에 주요 참여자가 참석하는 회의를 통해 결정한다.

[과업지침서 (PEG) 작성 내용(참조) I]

<table>
<thead>
<tr>
<th>사업명</th>
<th>주요 이슈사항</th>
<th>BIM 활용 주목적</th>
<th>정량화 가능한 목적 설정 (생산성, 비용, 공기, 품질, 안전 등)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>계획단계</td>
<td>설계단계</td>
</tr>
<tr>
<td></td>
<td></td>
<td>◎</td>
<td>○</td>
</tr>
<tr>
<td>◎ 주요 활용 목적</td>
<td>○ 부가적인 활용 목적</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

예시:

사업구간 현황모델링
원가계산
공정계획
사업구간 분석
설계검토
설계검토 (도면, 수량)
설계 모델링
구조해석
일조분석
법규검토

3차원 간섭검토
부지공간 계획
공정관리
제작 및 품질 관리
검측
준공 모델
차산관리
이력관리
재난안전관리
[과업지침서 (PEG) 작성 내용(참조) II]

<table>
<thead>
<tr>
<th>우선순위</th>
<th>목적</th>
<th>BIM 활용방안</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>설계 품질 개선</td>
<td>BIM기반 설계검토, 수량 및 도면 검토</td>
</tr>
<tr>
<td>2</td>
<td>사업 공기 관리</td>
<td>사업구간 가상모델 구축을 통한 주요 공정 검토, 관련 기관 협의, BIM 기반 사전 공정 회의</td>
</tr>
<tr>
<td>3</td>
<td>예상 민원 사전 해결</td>
<td>사업구간 가상모델 구축, 토지보상, 저장물, 소음, 일조 등 민원 사항 검토 및 협의</td>
</tr>
</tbody>
</table>

(3)에 대하여: BIM 모델을 통한 설계 보완, 조정 작업들은 해당 업무를 담당하는 기술자의 참여가 반드시 필요하다. BIM 과업지침서를 작성하기 위해서는 담당장을 맡은 팀이 계획수립을 위한 회의를 소집하여 핵심적인 의사결정을 하고 상세한 계획을 수립하는 절차를 만들어야 한다. 실무자들이 목적을 설정하고 이를 달성하기 위한 기술적 제안을 사업을 수행하는 참여기업에서 제공하게 된다.

1.3 BIM 실행계획, 실행계획서 및 실행절차

(1) BIM의 목표와 활용방안이 설정되면 사업의 추진 단계에 따른 실행계획이 수립되어야 한다. 실행계획은 사업의 성격에 따라 발주자가 수립하거나 사업의 참여 기업이 제안할 수 있다.

(2) BIM 실행계획은 실행절차를 포함해야 하며, 실행절차의 중요한 내용은 BIM 모델을 통한 정보 교환의 시기, 주체, 숭인, 활용 단계를 설정하는 것이다. 각 절차별로 제출되어야 하는 BIM 성과물도 정의되어야 한다. 이러한 계획사항은 계약 사항으로 반영되는 것이 필요하다.

[해설]
(1)에 대하여: 사업 제안자가 BIM 실행계획서 (BEP: BIM Execution Plan)를 수립하는 경우에 발주자는 BIM의 목표와 활용방안을 BIM 정보요구사항으로 정의해서 제시하고 실행계획서의 작성 템플릿을 제공한다 (부록 I).
(2)에 대하여: 실행절차는 다음의 순서에 따라 설정하는 것이 바람직하다.
- BIM 실행절차 매핑: 전체적인 BIM 활용에 대한 개요와 세부적인 BIM 적용 절차를 상호 연계시키는 작업
- 전체적인 BIM 개요: 각 BIM 활용 목적별로 절차를 다음의 예시를 참고하여 설정하여야 한다. 아래의 기호를 참고하여 사용한다.

<table>
<thead>
<tr>
<th>이벤트</th>
<th>사업 절차상에 발생하는 일로 시작, 중간, 끝으로 구성</th>
</tr>
</thead>
<tbody>
<tr>
<td>절차</td>
<td>구성요소가 행하는 절차는 사각형으로 표시</td>
</tr>
<tr>
<td>게이트웨이</td>
<td>의사결정에 해당하는 것으로 순차적인 흐름의 수령 및 발산을 조절</td>
</tr>
<tr>
<td>절차 흐름</td>
<td>절차내에서의 선 후를 표시</td>
</tr>
<tr>
<td>연계</td>
<td>정보와 절차를 데이터 객체에 연결시키고. 화살표 방향은 흐름의 방향</td>
</tr>
<tr>
<td>폼</td>
<td>엑티비티의 세트를 구분하는 그래픽 컨테이너 역할</td>
</tr>
<tr>
<td>레이아웃</td>
<td>폴레의 하부 구분으로 엑티비티를 조직하거나 분류할 때 사용</td>
</tr>
<tr>
<td>데이터 객체</td>
<td>데이터 요구사항이나 엑티비티에 의하여 생성되는 것</td>
</tr>
<tr>
<td>그룹</td>
<td>정보의 분류를 표현</td>
</tr>
</tbody>
</table>

 세부 BIM 활용 맵 작성: 각 BIM 활용 방안에 대한 세부적인 절차를 작성해야 한다. 여기에는 참조 정보, 절차, 정보 교환이 정의되어야 한다. 이를 위해서는 BIM 활용의 핵심 절차를 정의하고 각 절차들의 상호 관계를 설정해야 한다. 정보에 관해서는 참조 정보가 무엇인지를 정의하고 정보 교환 및 책임자를 규정해야 한다. 이러한 절차는 BIM 전문가에 위탁하여 작성하거나 민간 참여기업이 BIM 실행계획서에 포함하여 제안할 수 있다.
Level 2 : 4D 모델링
프로젝트 명

참고 정보
- 생산정보
- 리드타임

철차
철차시작
- 정보교환 요구사항 선정
 모든 참여자
- 기존 3D모델 선정
 생성/변경
 모든 참여자
- 3D 요소에 공정연계
- 4D 모델러
 모든 참여자
- 모델 검증
 모델 정확성?
 모든 참여자
- 4D 모델 공정 검토
 모든 참여자
- 공정 완료여부?
- 철차 종료

성과물
- 3D 모델
- 공정(초안)
- 4D 모델(초안)
- 공정
- 4D 모델
Level 2: 설계 조정
프로젝트 명

참 고 정보
자재적용 표준
계약 요구사항
검토교환 요구사항

결 차
결차 시작

설계조정 결차 시작

모델공유 체계별
BIM 코디네이터

조정방법 정의
BIM 코디네이터

각 영역별 모델 정보정의
모든 참가자

결차 정의
모든 참가자

간섭검토 프로토콜 수립
모든 참가자

설계모델

영역별 모델 생성
모든 참가자

동합모델 편집
BIM 코디네이터

간섭검토
모든 참가자

Yes
간섭검토
모든 참가자

No
간섭여부?

결차중료

설계모델

영역별 조정모델

조정된 모델
1.4 BIM 활용을 위한 지원 사항

사업에 BIM을 활용하기 위해 필요한 지원 사항을 정의하고 준비하여야 한다. 이는 계약, 협업 절차, 기술적 준비사항, 품질관리 절차를 포함한다.

[해설]

사업초기에 사업의 성격과 주요 목표를 고려하여 BIM의 활용 목적이 명확하게 하면 그에 대응하는 실행계획이 수립된다. 실행계획서 (BEP)는 발주자가 직접 작성하거나 항목과 주요 사항을 제시한 후 사업 참여자가 제안할 수 있도록 할 수 있다. BIM 실행계획서는 다음의 내용으로 구성될 수 있다.

1) BIM 사업 실행계획의 개요
2) 사업 정보
3) 주요 사업 책임자
 사업에 참여하는 각 주체에서 최소한 한 명의 책임자가 정해져야 하는데 발주자, 설계사, 시공사, 컨설팅, 협력업체, 제조사, 제품 공급자가 이에 해당한다. BIM 관리자와 분야별 책임자가 정해지고 이에 대한 연락처가 공유되어서 협업이 진행되어야 한다.
4) 사업 목표 및 BIM 활용 목적
5) 조직 구성 및 역할
6) BIM 활용 절차
7) BIM 정보 교환
8) BIM 및 유지관리를 위한 정보 요구사항
9) 협업 절차
 정보 교환 시기에 대한 정의와 승인은 매우 중요하다. 다음 사항을 문서화해야 한다.
 - 정보 교환 명칭
 - 정보 교환 제공자
 - 정보 교환 수신자
 - 일회성 혹은 주기성
- 시작일자와 완료일자
- 모델 파일 형식
- 소프트웨어
- 원 파일 형식
- 교환 파일 형식

10) 모델 품질관리 절차

BIM 성과물을 제출하기 전에 각 참여자는 설계, 데이터 세트, 모델 속성을 검토해야 한다. 모델의 품질 검토는 다음의 사항으로 진행될 수 있다.
- 시각적 검토 : 네비게이션 소프트웨어 혹은 뷰어를 통한 시각적 모델 검토
- 간섭 검토 : 간섭 검토 기능을 이용한 객채간 간섭 여부 검토
- 표준 검토 : 모델이 계획에서 제시된 표준을 만족하는지 검토
- 객체 검증 : 각 객체의 데이터 세트의 정확성 검토

11) 하드웨어/소프트웨어/네트워크에 대한 요구사항

12) 모델 구조

모델의 정확성과 완결성을 다음 항목을 고려하여 검토한다.
- 파일 명칭 정의
- 모델 구조 설명 (reference, level, layer 등)
- 단위 및 좌표계
- BIM 및 CAD 표준 준수

13) 사업 성과물 정의

14) 성과물 제출 및 계약

계약 사항에 다음 항목들이 고려되어야 한다.
- 모델 생성 및 책임 주체
- 모델 공유 및 모델의 신뢰성
- 상호 연동성 및 파일 형태
- 모델 관리
- 지적재산권
- BIM 실행계획서를 위한 요구사항
1.5 BIM의 성과품의 유의사항 및 권한

(1) 고속도로 사업에 BIM을 도입하고자 할 때 BIM 성과품 및 이 성과품을
도입하기 위한 캐드 플랫폼은 다음 사항을 고려하여 제시한다.

- IFC 형태로 대표되는 개방형 BIM에 대한 성과품은 장기적인 관점
 에서 변환이 가능한 객체인 경우에 한해서 요구한다.
- BIM 성과물을 받주자가 활용하기 위해서는 반드시 원본 BIM 모델을
 제출하도록 하고 이를 볼 수 있는 뷰어를 함께 제공하도록 요구한다.
- 발주자는 제공받은 원본 BIM 모델의 소유권은 제작자에 있음을 인지
 하고 제3자에게 제공시 제작자의 동의를 얻은 후 사용권을 행사한다.
- 발주자의 정보요구사항과 BIM 성과물을 도출하기 위한 캐드 플랫폼
 혼성물 도출이 가능한 모든 캐드 플랫폼을 사용할 수 있다.

(2) 발주자의 BIM 적용 목적에 맞는 정보요구사항과 모델 상세 수준의 일관성을 확보하기 위해 어떤 캐드 플랫폼에서도 작성 가능한 형태의 탭플릿을 활용하도록 한다.

(3) 국가적으로 설정한 표준 분류체계, 명칭 등의 성과물 표준 사항들은
정보요구사항에 명시해서 제시한다.

[해설]
(1)에 대하여: IFC로 대표되는 개방형 BIM 표준은 고속도로 사업에 활용할 수 있는 수준으로 개발되거나 국제 표준화되지 못한 상황이고, 국토교통부가 진행하고 있는 InfraBIM 표준이 아직 활용 가능한 상황이 아님을 고려한 것이다. 건물 위주로 개발되어 제시된 IFC 모델로 도로 관련 시설물 모델을 변환하게 되면 모델이 손상되거나 정보가 제대로 반영되지 못하여 이후 활용이 어려울 수 있음에도 불구하고 이를 요구하게 되면 효용성이 없는 과도한 시간과 비용을 지출하게 된다. 따라서 일부 구조물 등 변환이 원활한 경우에 한해서 납품을 요구하는 것이 현실적이다. 현재 진행중인 Infra BIM 표준이 활용가능한 수준이 되고 정보처리가 납품을 받은 성과물을 관리할 수 있는 시스템이 갖추어지면 전반적으로 성과물로 요구할 수 있다.

원본 BIM 모델을 생성한 캐드 파일 형태를 반드시 제출하도록 해야 하고 이를 볼 수 있는 무상 뷰어를 함께 제공받는 것이 필요하다. 아래 표에서 제시
한 프로그램은 무상으로 사용가능한 대표적인 뷰어와 이의 특징들이다. 개별 캐드 플랫폼별로 제공하는 뷰어의 경우에는 원본 데이터의 시각화와 관련된 많은 기능들을 제공하고 있고 솔루션 개발의 속도가 빠르기 때문에 사업 시작 전에 프로그램의 버전과 활용 가능성에 대한 검토가 필요하다.

<table>
<thead>
<tr>
<th>구분</th>
<th>DDS CAD</th>
<th>Navisworks Freedom</th>
<th>Solibri Model Viewer</th>
<th>Tekla BIMsight</th>
<th>xBIM Xplorer</th>
<th>BIM Vision</th>
</tr>
</thead>
<tbody>
<tr>
<td>공간 검토</td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>간섭 검토</td>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>충돌 관리</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>목업</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>문서 링크</td>
<td>0</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>시각화 변화</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>다중 모델</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>변경 저장</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>측정 도구</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>4D</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>색상 관리</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>모델 비교</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>상호 연동성</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IFC</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>IFCzip</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>BCF</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BCFzip</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>gbXML</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COBie</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>활용성</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>인터페이스</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>네비게이션</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>사용 수월성</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

국제적으로 원본 BIM 모델에 관하여서는 제작자의 소유권을 보장해 주는 경우가 대부분이며, BIM의 활용 범위가 국내외 전체에 유기적으로 연결되어 있는 만큼, 제작자의 소유권은 보장 되어야 한다. 그러나 공익을 목적으로 발주자가 보다 유행한 활용을 필요로 할 경우, 제작자의 동의를 얻은 후 제3자에게 제공할 수 있다.

해외에서 BIM 발주에서 주로 요구되는 것은 단일 플랫폼 기반의 BIM 모델인데 이는 발주자가 시설물의 유지관리 시스템을 운영 및 관리하기 위한 자산 관리시스템과의 연관성을 확보하기 위한 것이고 웬활한 사업 수행의 가치가 모델의 가치보다 높다고 판단하기 때문이다. 우리 공사는 BIM 도입 초기의
민간의 자율적인 기술개발을 허용하고 사업에서의 활용 가치를 우선적으로 고려하여 구체적인 캐드 플랫폼은 사업 참여 민간기업의 자율적인 판단에 맡기는 것이 바람직하다. 다만, 정보요구사항이나 모델 상세 수준의 반영이 되어야 하고 설계 변경 반영이나 시공, 유지관리 등에서의 활용성이 높은 캐드 플랫폼을 사용하도록 유도하는 것이 바람직하다.

(2)에 대하여: 서로 다른 참여자가 BIM 모델을 생성하는 경우 모델의 구성, 분류체계, 명칭, 상세수준, 기본정보사항 등이 달라서 발주자가 일관되게 확인하고 활용하는데 어려움이 있을 수 있다. 일관성 있는 BIM 성과물 납품을 유도하기 위해 각 캐드 플랫폼별 검증된 템플릿을 제공하는 싱가포르의 사례를 참고할 필요가 있다. 발주자의 요구사항을 만족할 수 있는 템플릿을 민간 기업이 제시하면 이를 검증하고, 검증이 통과된 템플릿은 발주자의 공식적인 웹사이트 등을 통해 공개하여 설계자가 이용할 수 있도록 한다.

(3)에 대하여: 현재의 도면작성이나 설계 성과품에서 제시되어 있는 국가 표준에 관한 사항들은 BIM 성과물에도 그대로 적용한다.
2. 용어 정의

이 가이드라인에 사용된 용어 중에 BIM 설계와 연관된 주요 용어에 대해서 그 정의를 기술하였다.

- **BEP (BIM Execution Planning)**: BIM을 활용한 실행계획서로 사업 제안자가 작성하여 입찰시 제출하는 것으로 계약의 효력을 갖는 계획서

- **BIM (Building Information Modeling)**: 토목, 건축, 플랜트를 포함한 건설전 분야에서 시설물 객체의 물리적 혹은 기능적 특성에 의하여 시설물 수명주기 동안 의사결정을 하는데 신뢰할수 있는 근거를 제공하는 3차원 디지털 모델과 그의 작성 및 활용을 위한 업무절차를 포함하여 지칭

- **BIM 기반의 건설정보분류체계**: 건설기술진흥법 제19조(건설공사 지원 통합정보체계의 구축)의 규정에 따라 건설공사 지원 통합정보체계의 활용을 촉진하기 위하여, 건설공사의 계획단계, 설계단계, 시공단계, 유지관리단계 등에서 생성 또는 활용되는 BIM 데이터를 속성정보인 위치정보, 형상정보, 물량정보, 재료정보, 시공정보 등으로 체계적인 분류하기 위한 기준

- **BIM 데이터**: BIM 제작 프로그램을 사용하여 작성된 원본 데이터와 IFC로 변환한 데이터

- **BIM 성과품**: BIM을 적용하는 사업에서 최종적으로 완성된 BIM 산출물의 집합을 뜻하며, 일반적으로 계약서나 시방서 또는 과업지시서 등에 명시되고 과업지시서 등의 요건에 의하여 납품 제출하는 BIM 데이터 및 관련자료를 총칭

- **BIM 소프트웨어**: BIM 정보를 가진 모델데이터를 작성, 검토, 분석, 가공, 활용 등의 업무를 하나 이상 수행하도록 만들어진 소프트웨어

- **BIM 품질관리**: BIM 성과품이 본 지침의 내용에 부합하도록 관리하는 업무

- **CAD (Computer Aided Design, 캐드)**: 컴퓨터에 기록되어 있는 설계정보를 그래픽 디스플레이 장치로 추출하여 화면을 보면서 설계하는 것이 혹은 설계할 수 있는 프로그램의 통칭. 본 가이드에서는 2D, 3D를 모두 포함.

- **DEM (Digital Elevation Model)**: 수치 표고 모형이라는 뜻으로 실제의 지형 정보 중 건물, 수목, 인공 구조물 등을 제외한 지형 부분을 표현하는 수치 모형
- DTM (Digital Terrain Model) : 수치 지형 모형이라는 뜻으로 DEM과 동일한 의미로 사용
- GIS (Geographic Information System) : 지리정보시스템이라는 뜻으로 지리적으로 참조 가능한 모든 형태의 정보를 효과적으로 수집, 저장, 갱신, 조정, 분석, 표현할 수 있도록 설계된 컴퓨터의 하드웨어와 소프트웨어 및 지리적 자료 그리고 인적자원의 통합체
- IDM (Information Delivery Manual) : 사업 참여 주체들 간의 정보 전달의 방식을 구체적으로 명시한 지침서
- IFC (Industry Foundation Classes) : Norwegian BuildingSMART와 NBIMS가 개발하여 소프트웨어 간에 BIM 데이터의 상호운용 및 호환을 위하여 BuildingSMART International이 개발한 국제표준 데이터 포맷을 말하며, 다양한 소프트웨어들이 서로 모델정보를 공유 또는 교환을 통하여 개방형 BIM을 구현하는데 사용하는 공인된 국제표준 (ISO 16739) 규격
- IFD (International Framework for Dictionaries) : ISO 12006-3에 근거한 용어 정의 사전으로 IFC와 호환
- ISO (International Organization for Standardization) : 157개국의 국가표준에 대한 네트워크로 국제 표준
- IPD (Integrated Project Delivery) : 사업 기획 초기부터 관련된 참여자들이 모두 포함되어 협업을 통해 계획을 수립하고 정보를 공유하는 사업 수행체계
- LOD (Level of Detail) : BIM 모델의 형상 및 정보의 상세 정도
- OBS (Organization Breakdown Structure) : 사업 수행 시 협업을 위한 조직 체계
- PBS (Product Breakdown Structure) : 구성부재의 데이터 연결체계로 상호 연관성을 규정하고 업무 절차를 반영한 체계
- PDM (Product Data Management) : 구성 부재에 대한 데이터를 관리하는 시스템
- PEG (Project Execution Guide) : 발주자가 사업의 전략적 목표에 맞는 BIM 활용 계획을 작성하는 과업지침서
- WBS (Work Breakdown Structure) : 건설 분야의 업무 프로세서의 효율과
상호 연관성을 규정하는 절차 구성

- **XML (Extensible Markup Language)**: FIATECH이 지원한 AEX (Automating Equipment Information eXchange) 프로젝트에서 개발, “XML 전자문서” 라 함은 W3C 표준화 단체에서 개발한 XML 규칙에 따라 전자화된 문서의 포맷을 말하며 “XML 스키마” 라 함은 W3C에서 정한 XML 규칙에 따라 문서의 구조정보에 데이터 유형과 속성정보를 추가하여 정의한 정보

- 3차원 객체 정보 모델: 계층화된 형태를 독립적으로 구성할 수 있는 형상 모델이 결합되어 시스템을 형성할 수 있고 각 모델은 메타데이터의 형태로 형상, 위치, 속성 정보를 담을 수 있는 정보 모델

- 4D CAD: 3차원 형상모델에 시간 및 공정 단위 정보를 포함한 캐드

- 5D CAD: 3차원 형상모델에 시간 및 공정, 비용을 포함한 캐드

- 6D CAD: 3차원 형상모델에 시간 및 공정, 비용, 그리고 자원을 포함한 캐드

- 7D CAD: 3차원 형상모델에 시간, 공정, 비용, 자원 및 유지관리 기록을 포함한 캐드

- 건설CALS/EC (Continuous Acquisition and Life-Cycle Support/ Electronic Commerce): 기획, 설계, 발주, 시공, 유지관리 등 건설 생산 활동 전 과정에 걸쳐 발주자, 시공업체, 건설관련 기관이 전산망을 통해 건설 정보를 전자적으로 교환, 공유 및 활용하여 건설 사업을 지원하는 건설통합정보시스템

- 공간: 공간용도와 물리적인 부위요소에 의하여 구성되는 면적 또는 체적 및 개념적 구획

- 공종: 기술적으로 시설물의 한 부위를 구성하는 작업단위로서 제반 자원을 동원하여 구성된 기능을 가지도록 하는 작업 및 작업결과를 말하며, 원가관리를 위한 물량산출 분절 객체 및 공정관리를 위한 분절 객체 최소 작업단위로 구성함을 의미

- 납품 매체: BIM 성과품을 납품하기 위해 사용하는 매체로서 높은 의미로 종이나 청사진, 전자매체 등이 포함되지만 본 표준에서는 CD-ROM이나 DVD-ROM 등과 같은 전자매체로 한정
• 변수모델링 (Parametric Modeling) : 3차원 형상을 작성할 때 모델의 각 치수를 변수화 할 수 있어야 하고 모델간의 거리 등의 구속조건을 부여 할 수 있어서 모델의 변경 시 수치를 입력하여 수월하게 3차원 형상을 구성할 수 있도록 모델링하는 방법
• 자동물량 : BIM 소프트웨어를 통하여 물리적 요소를 포함하고 있는 BIM 객체에서 개수, 길이, 면적, 체적 등, 자동으로 산출되는 물량
• 연동물량 : BIM 소프트웨어를 통하여 자동으로 생성되는 자동물량과 연동 시켜 산식으로 산출되는 물량으로서, BIM 모델의 변경에 따른 자동물량 변경과 연동하여 일정한 규칙으로 동시에 변경이 가능한 물량
• 수동물량 : BIM 모델 객체와 무관하게 수학적인 접근방식으로 수동으로 산출되는 물량
• 속성정보 : 3차원 BIM 모델이 가질 수 있는 정보 형태로, 재료성질, 제품명, 단가 등의 정보를 표현한 문자 혹은 숫자 등의 데이터
• 통합건설정보분류체계 : 건설기술진흥법 제19조(건설공사 지원 통합정보 체계의 구축)의 규정에 따라 건설공사 지원 통합정보체계의 활용을 촉진 하기 위하여 건설공사의 제반단계에서 발생되는 건설정보를 체계적으로 분류하기 위한 기준
3. 명칭 및 분류체계

3.1 명칭

3차원 정보모델이 사업 참여주체들 간 공유되고 전달될 때 정확성을 확보하기 위해서는 명칭의 부여가 통일성을 갖는 것이 매우 중요하다.

(1) 일반적인 경우에는 통합건설정보분류체계에서 정한 시설물 분류, 공간 분류, 부위분류, 공중분류, 자원분류의 명칭 체계를 따른다. 국제적인 건설 사업을 위한 명칭체계는 ISO 12006-3에 근거한다.

(2) 위에서 정하지 않은 새로운 시설물 혹은 명칭이 요구되는 항목에 대해서는 사업 시작시점에 참여주체들 간의 협의를 통해서 명칭을 통일하여 사용한다.

[해설]

(1)에 대하여: 3차원 모델은 정보 공유의 효율성 및 의사소통을 시각화를 통해 정확하게 수행하기 위한 목적이 중요하기 때문에 명칭의 통일성을 반드시 지키는 것이 필요하다. 또한 2차원 도면을 설계 성과물로 제출할 경우에도 현재의 성과물 구성을 명칭 및 분류체계인 통합건설정보분류체계를 따르는 것이 연동성 및 재활용성을 차원에서 바람직하다. 이외의 명칭이 필요한 경우에는 설계기준 용어 및 도록 표준용어를 사용하도록 사전 협의를 통해 정정해야 한다.

(2)에 대하여: 국내 및 해외의 건설 사업에서 새로운 형태의 시설물이나 공종, 자원의 활용이 많기 때문에 명칭을 통일하기 위해서는 사업 참여주체들 간에 명칭에 대한 사전협의를 필요로 한다. 정보 전달 매뉴얼,IDM: Information Delivery Manual을 별도로 설정할 수 있다. ISO 12006-3에 근거한 International Framework for Dictionaries (IFD)가 국제적으로 활용 가능한 용어 사전이다. BIM 성과품 체계에 건설 전문분야의 코드를 부여할 필요가 있을 경우 전산설계도서표준지침서 ‘2.2 건설전문분야 코드의 사용’에 의거 1자리 코드를 사용한다.
3.2 분류 체계

(1) BIM 정보분류체계는 모델데이터를 구성하고 있는 객체마다 고유의 속성정보가 부여되도록 체계적으로 분류하여 정리한 목록을 말한다. 본 가이드에서는 속성정보를 BIM 객체분류체계와 BIM 속성분류체계로 구분하며 BIM 속성분류체계는 BIM 위치정보 분류체계, BIM 공정정보 분류체계, BIM 공중정보 분류체계, BIM 시공정보 분류체계로 구분한다.

(2) BIM 객체분류체계는 모델데이터를 구성하는 물리적 객체단위를 체계적으로 분류한 목록을 말한다. 객체를 크게 공간 객체와 부위 객체로 분류한다. 공간 객체는 시설물의 도로면, 교량, 터널, 휴게소, 건물의 층 등 공간의 범위를 정의하는데 사용되는 객체로서 개념적으로 공간을 구성하기 위하여 사용한다. 부위인 물리적인 관점에서 시설물의 한 부분으로서 공간을 둘러싸고, 공간의 기능을 지원하는 시설물의 구성요소를 의미하며 부위 객체는 BIM 객체로서 시설물을 물리적으로 시설을 구성하기 위하여 사용한다. 부위 객체의 분류는 한국도로공사가 사용하는 기술적 분류체계에 의하여 확보가 어려운 경우 소프트웨어가 제공하는 목록을 사용할 수 있다. 입력대상은 부위 객체 분류목록을 대상으로 전문분야별로 최소 입력 요구 대상을 설정한다.
(3) BIM 객체분류체계는 작업분류체계(WBS), 원가분류체계(CBS), 모델분류체계(MBS)로 구성된다. BIM기반 CALS(Continuous Acquisition & Life-cycle Support) 표준분류체계는 도로, 교량, 터널로 구분된 표준분류체계를 사용한다.

(4) BIM 속성분류체계는 각각의 객체분류단위가 공통적으로 가진 내부적 특성의 집합을 말한다. 객체별 속성은 식별, 형상, 물성, 참고 등의 특성을 부여하기 위하여 사용한다. 객체별 속성의 분류는 한국도로공사가 사용하는 BIM 기반의 건설정보분류체계인 기술적 분류체계에 의한다. 입력대상은 BIM 속성분류체계를 대상으로 전문분야별로 최소 입력 요구대상의 목록을 설정한다.

[해설]
(1),(2)에 대하여: BIM 정보분류체계는 모델데이터를 체계적으로 공유 및 교환하기 위하여 필요하다. BIM 정보분류체계는 한국도로공사에서 위치정보, 형상정보, 물량정보, 속성정보, 도면정보 등을 설계단계에서는 물량관리, 원가관리, 시공관리, 간섭체크 등에 시공단계에서는 설계변경, 공정관리, 실적관리, 기성관리, 자체관리, 장비관리, 현장관리, 품질관리, 안전관리 등에, 유지관리단계에서는 이력관리, 현장관리, 장비관리, 시설관리 등에 사용하고자 하는 최소 요구수준을 확보하여 적용한다.

국제적인 분류체계는 ISO 12006-2에 건설에 대한 정보 분류체계의 프레임워크를 제공하고 있고 이를 Uniclass (영국), OmniClass™ (미국)에서 받아들여 사용하고 있다. 모델의 상세 정도인 LOD는 매우 중요하기 때문에 사업에 적용하기 전에 참여자들 사이의 BIM 기술 활용 목적에 맞추어 합의하는 과정이 필요하다.

(3)에 대하여: WBS 분류체계는 공정 관리를 위해 지정한 작업 단위 분류체계로 설계 및 시공단계, 그리고 유지관리 단계에 의해 각각 7단계의 정보를 가진다. BIM기반의 WBS 분류체계는 도로의 예로 제시한 것은 다음과 같다. WBS 분류체계는 아래의 테이블 구조로 구성되어 있다.
설계/시공 WBS

<table>
<thead>
<tr>
<th>설계/시공</th>
<th>WBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (도로 시설)</td>
<td>2 (공종)</td>
</tr>
<tr>
<td>도로</td>
<td>도로</td>
</tr>
</tbody>
</table>

유지관리 WBS

<table>
<thead>
<tr>
<th>유지관리</th>
<th>WBS</th>
</tr>
</thead>
<tbody>
<tr>
<td>7-1 (유지-작업관리단위)</td>
<td></td>
</tr>
</tbody>
</table>
BIM 기반 도로공사 객제모델 분류체계는 다음과 같은 형식으로 설정할 수 있다. 이는 기존의 건설통합분류체계를 고려하여 제안하여 제시할 수 있다. 수량산출 기준 지침서와 위치정보, 공종분류, 공종정보로 구분할 수 있다.
<table>
<thead>
<tr>
<th>지점번호</th>
<th>세부내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERRY</td>
<td>방법 및 조건</td>
</tr>
</tbody>
</table>

BIM 속성분류체계의 구조는 다음과 같다. BIM 객체모델의 속성은 모델 객체에 부여되는 구성요소로 필요한 경우 외부정보로 분리하여 연계 운영할 수 있다. BIM 객체모델의 속성 및 외부정보는 사업단계별로 선별하여 사용할 수 있으며 용도에 따라 확장하여 사용할 수 있다.
4. BIM 적용 공종 및 모델 수준 정의

4.1 BIM 적용 공종

<table>
<thead>
<tr>
<th>공종</th>
<th>WBS</th>
<th>작성 객체</th>
</tr>
</thead>
<tbody>
<tr>
<td>토공</td>
<td>토사</td>
<td>흙쌓기, 홀삭기</td>
</tr>
<tr>
<td></td>
<td>리평</td>
<td>흙쌓기</td>
</tr>
<tr>
<td></td>
<td>노체</td>
<td>흙쌓기</td>
</tr>
<tr>
<td></td>
<td>노상</td>
<td>흙쌓기</td>
</tr>
<tr>
<td></td>
<td>흙깎기 기타</td>
<td>흙깎기</td>
</tr>
<tr>
<td></td>
<td>흙쌓기 기타</td>
<td>흙쌓기</td>
</tr>
<tr>
<td>배수공</td>
<td>L형 축구</td>
<td>L형 축구</td>
</tr>
<tr>
<td></td>
<td>U형 축구</td>
<td>U형 축구</td>
</tr>
<tr>
<td></td>
<td>V형 축구</td>
<td>V형 축구</td>
</tr>
<tr>
<td></td>
<td>산마루 축구</td>
<td>산마루 축구</td>
</tr>
<tr>
<td></td>
<td>중배수관</td>
<td>중배수관, 중배수관 면벽</td>
</tr>
<tr>
<td></td>
<td>황배수관</td>
<td>황배수관</td>
</tr>
<tr>
<td></td>
<td>배수관 기타</td>
<td>집수구</td>
</tr>
<tr>
<td></td>
<td>다이크</td>
<td>콘크리트 다이크</td>
</tr>
<tr>
<td></td>
<td>맹암기</td>
<td>맹암기</td>
</tr>
<tr>
<td></td>
<td>집·방수기</td>
<td>집수정, 집수거, 방수기, 스타그레이팅</td>
</tr>
</tbody>
</table>

[해설]
(1)에 대하여: 아래의 예시에 나타낸 바와 같이 공종별 3차원 모델링은 수행 될 수 있다. 이때 모델의 상세 수준, 모델링 범위 설정은 BIM의 활용 목적에 따라 결정된다.
<table>
<thead>
<tr>
<th>해당 공</th>
<th>주요 작업</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>도수로</td>
<td>콘크리트 도수로</td>
<td></td>
</tr>
<tr>
<td>배수시설 기타</td>
<td>탄거, 개거, 다이크, 배수로</td>
<td></td>
</tr>
<tr>
<td>동상 방지중</td>
<td>동상방지중 포설 및 다팽</td>
<td></td>
</tr>
<tr>
<td>콘크리트포장</td>
<td>콘크리트포장포설</td>
<td></td>
</tr>
<tr>
<td>콘크리트포장 기타</td>
<td>연결로접속부 및 길이개부, 교량접속부 및 반침슬래브 포장포설</td>
<td></td>
</tr>
<tr>
<td>보조기중</td>
<td>보조기중 포장포설</td>
<td></td>
</tr>
<tr>
<td>기중</td>
<td>기중 포설 및 다짐</td>
<td></td>
</tr>
<tr>
<td>중간중</td>
<td>중간중 포설 및 다짐</td>
<td></td>
</tr>
<tr>
<td>포장 포설 및 다짐</td>
<td>표중 포설 및 다짐</td>
<td></td>
</tr>
<tr>
<td>아스팔트포장 기타</td>
<td>프라임코팅, 데코팅</td>
<td></td>
</tr>
<tr>
<td>특수포장</td>
<td>교면포장</td>
<td></td>
</tr>
<tr>
<td>배수시설</td>
<td>교통표지판</td>
<td></td>
</tr>
<tr>
<td>안내표지판</td>
<td>안내표지판</td>
<td></td>
</tr>
<tr>
<td>방호책</td>
<td>방호책</td>
<td></td>
</tr>
<tr>
<td>교통시설 기타</td>
<td>방호벽, 가드레일, 중앙분리대</td>
<td></td>
</tr>
<tr>
<td>방음벽</td>
<td>방음벽</td>
<td></td>
</tr>
<tr>
<td>교량공</td>
<td>SEG N</td>
<td></td>
</tr>
<tr>
<td>기지제작, 가설</td>
<td>기지</td>
<td></td>
</tr>
<tr>
<td>상부 기타</td>
<td>방음벽, 방호벽, NOTCH, 교량배수시설공(점배수, 선배수), 그 외 콘크리트 부재</td>
<td></td>
</tr>
<tr>
<td>기초</td>
<td>콘크리트 기초</td>
<td></td>
</tr>
<tr>
<td>백체</td>
<td>콘크리트 백체</td>
<td></td>
</tr>
<tr>
<td>기둥</td>
<td>기둥</td>
<td></td>
</tr>
<tr>
<td>코핑</td>
<td>코핑</td>
<td></td>
</tr>
<tr>
<td>교량장치</td>
<td>교량반침</td>
<td></td>
</tr>
<tr>
<td>교대기타</td>
<td>방수형 붕합재, ASPHALT 방수, 신축이음재, 그 외 콘크리트 부재</td>
<td></td>
</tr>
<tr>
<td>교각기타</td>
<td>콘크리트 부재</td>
<td></td>
</tr>
<tr>
<td>터널공</td>
<td>개착부</td>
<td></td>
</tr>
<tr>
<td>구성</td>
<td>개착부</td>
<td></td>
</tr>
<tr>
<td>급작 및 버락</td>
<td>급작 및 버락처리</td>
<td></td>
</tr>
<tr>
<td>지보</td>
<td>지보</td>
<td></td>
</tr>
<tr>
<td>스프크리트</td>
<td>스프크리트</td>
<td></td>
</tr>
<tr>
<td>락볼트</td>
<td>락볼트</td>
<td></td>
</tr>
<tr>
<td>콘크리트 라이닝</td>
<td>콘크리트 라이닝, 콘크리트 라이닝 신축이음</td>
<td></td>
</tr>
<tr>
<td>비탈면 보강</td>
<td>보강 락볼트</td>
<td></td>
</tr>
<tr>
<td>개착부 기타</td>
<td>배수관, 스틸그레이팅</td>
<td></td>
</tr>
<tr>
<td>부대공</td>
<td>터널 내 오염 도장, 배수콘크리트</td>
<td></td>
</tr>
</tbody>
</table>
원지형
양지형
지형모델링
선형 모델링
배수공 모델링
포장 모델링

교량 모델링

터널 모델링

연 백 룸

폭발성상세

티널단면

테나탈수상세

원활절계형
부대공 모델링

[공종 ITEM 단계별 BIM 활용계획]

<table>
<thead>
<tr>
<th>공종ITEM</th>
<th>활용방법</th>
<th>공정순서</th>
<th>공정요소</th>
<th>공정표현</th>
<th>계획요소</th>
<th>계획표현</th>
</tr>
</thead>
<tbody>
<tr>
<td>고속도로</td>
<td>각기</td>
<td>○</td>
<td>공사프로세스</td>
<td>공사요소</td>
<td>지속성</td>
<td>지속성</td>
</tr>
<tr>
<td>고속도로</td>
<td>각기</td>
<td>○</td>
<td>공사프로세스</td>
<td>공사요소</td>
<td>지속성</td>
<td>지속성</td>
</tr>
<tr>
<td>고속도로</td>
<td>각기</td>
<td>○</td>
<td>공사프로세스</td>
<td>공사요소</td>
<td>지속성</td>
<td>지속성</td>
</tr>
<tr>
<td>고속도로</td>
<td>각기</td>
<td>○</td>
<td>공사프로세스</td>
<td>공사요소</td>
<td>지속성</td>
<td>지속성</td>
</tr>
<tr>
<td>고속도로</td>
<td>각기</td>
<td>○</td>
<td>공사프로세스</td>
<td>공사요소</td>
<td>지속성</td>
<td>지속성</td>
</tr>
<tr>
<td>고속도로</td>
<td>각기</td>
<td>○</td>
<td>공사프로세스</td>
<td>공사요소</td>
<td>지속성</td>
<td>지속성</td>
</tr>
</tbody>
</table>

(2)에 대하여: BIM의 활용 목적에 따라 모델링에 포함되는 공종을 선택하고 모델의 상세수준과 정보 요구사항을 정의해야 한다. 이는 BIM 실행계획서 상
예 명시되도록 하는 것이 필요하고 아래의 표와 같은 양식을 사용할 수 있다. 발주자가 사업의 주요 목표를 고려하여 활용방안을 설정하면 계약자가 이를 달성하기 위한 적용 공종과 상세 수준을 결정하고 발주자 승인을 득하도록 요구한다. 이에 따라 엔지니어링 대가 산정의 근거로 활용한다.

<table>
<thead>
<tr>
<th>활용방안</th>
<th>적용 공종</th>
<th>상세수준 및 정보요구사항</th>
</tr>
</thead>
<tbody>
<tr>
<td>예방적 유지관리</td>
<td>자산관리</td>
<td></td>
</tr>
<tr>
<td>공간관리</td>
<td></td>
<td></td>
</tr>
<tr>
<td>재난관리</td>
<td></td>
<td></td>
</tr>
<tr>
<td>이력 모델링</td>
<td></td>
<td></td>
</tr>
<tr>
<td>가상 주택</td>
<td></td>
<td></td>
</tr>
<tr>
<td>디지털 제작</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3차원 관리 및 계획</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3차원 간섭 조정</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3차원 모델링</td>
<td></td>
<td></td>
</tr>
<tr>
<td>공학적 해석</td>
<td>LEED 평가</td>
<td></td>
</tr>
<tr>
<td>설계검토</td>
<td>공간분석</td>
<td></td>
</tr>
<tr>
<td>공정 계획 (4D 모델링)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>건적</td>
<td>현황 모델링</td>
<td></td>
</tr>
</tbody>
</table>

4.2 단계별 모델 수준 (LOD)

1. 모델의 상세 수준 (LOD: Level of Detail 혹은 Level of Development)은 3차원 BIM 모델의 용도와 사업 단계에 따라 설정해야 한다. LOD는 모델의 주된 활용 목적인 수량 산출, 3차원 조정 작업 및 계획에 따라 특정 상세나 정보가 모델에 어느 수준으로 표현되는지를 결정하는 것이다. 이는 BIM 실행계획서에 명시하여 일관성 있는 BIM 성과물 작업이 이루어질 수 있도록 한다. LOD는 100~500 까지 정의할 수 있다.

2. 설계 단계별로 특정 수준의 LOD를 모든 구성 요소에 적용하기 보다는 발주자가 모델의 활용성과 투입 비용 및 시간을 고려하여 중요도가 높은 최소한의 모델 범위와 수준을 설정하여야 한다.

3. 모델의 상세수준에는 비 그래픽적 요소인 관련 정보가 포함될 수 있다. 이는 속성 정보 혹은 관련 문서에 대한 연결 정보로 구성될 수 있다.
[해설]
(1)에 대하여: 모델의 상세수준은 BIM 모델이 건설 사업 수행과정에서 협업
의 매개로 역할을 수행하기 위해 모델의 일관성을 보장하기 위한 것이다. 미
국의 AIA (The American Institute of Architects)에서 LOD에 관한 제시한 가
이드라인에 따르면 다섯 단계로 구분하여 모델을 진화시키도록 하고 있다.

LOD 100 : 개념 모델 수준 (LOD 200을 만족하지 못하는 수준의 그래픽 표
현만 가능한 수준)
LOD 200 : 개략 형상 모델 수준 (개략적인 수량, 크기, 형상, 위치를 갖고 모
델이 구성되는 수준)
LOD 300 : 정밀 형상 모델 수준 (치수와 관련한 주요 사항이 모두 반영되는
수준으로 그래픽 정보 이외의 정보가 연계될 수 있음)
LOD 350 : 정밀 형상과 연계정보 모델 수준 (LOD 300 수준에 타 시스템과
의 연계 정보가 추가된 모델 수준)
LOD 400 : 제작 모델 수준 (상세나 조합, 설치 정보가 포함되어 제작 도면이
나 기계 가공이 가능한 모델 수준)
LOD 500 : 준공 모델 (현장에서 검증된 모델로 크기, 형상, 위치, 수량 및 방
향 정보가 포함되고 추가 정보가 연계될 수 있는 수준)

LOD의 설정은 사업마다 달라질 수 있고 이는 BIM 사업 수행계획서에서 제
시될 수 있다. 예를 들어 객체의 크기를 기준으로 10mm 이내는 모델링하지
않는다는 형태로 특정 구성요소의 모델 범위를 설정할 수 있다. 모델 요소는
두 가지 종류의 정보를 포함할 수 있는데 모델의 형상과 이에 관련된 수치적
혹은 물리적 속성 정보이다.
고속도로 관련 설계나 시공, 유지관리에 적합한 모델의 LOD 설정이 공식적
으로 제안된 사례는 없지만 건축분야에서 제시한 각 LOD의 수준의 원칙에
입각해서 LOD를 정의할 수 있다. 일반적으로 설계단계에서는 LOD 300 수준
에서 모델링이 요구될 수 있는데 이는 BIM 모델의 활용 목적에 따라 조정되
거나 모델링 여부 자체를 선택적으로 제시할 수 있다. LOD 설정의 예시는
아래와 같다.
[현장 모델링 LOD]

<table>
<thead>
<tr>
<th>LOD 100</th>
<th>단순한 지형 면모델 수준</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>LOD 200</th>
<th>요소 모델이 포함하는 사항</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>개략적인 기초 요소의 크기와 형태</td>
</tr>
<tr>
<td></td>
<td>개략적인 설비와 구조의 크기와 위치</td>
</tr>
<tr>
<td></td>
<td>코드와 공간 요구사항</td>
</tr>
<tr>
<td></td>
<td>현장의 경사에 대한 대략적 모델링</td>
</tr>
</tbody>
</table>
기초 모델링 LOD

<p>| LOD 100 | 기초가 다른 모델 요소에 포함되거나 형태나 재료가 판별되지 않는 수준에서의 개념적 요소로 표현 |
| LOD 200 | 일반적인 벽식 기초 표현, 지반조사 보고서에 근거하여 지반은 일반적으로 표현 |
| LOD 300 | 객체 모델이 포함하는 사항 - 전체적인 크기와 기초요소의 형상 - 경사면 - 무재의 외부 치수 - 연관된 정보 속성 - 콘クリ트 강도 - 철근 강도 - 지반조사 보고서에 근거한 지층 높이 |
| LOD 350 | 객체 모델이 포함하는 사항 - 슬리브 이음의 위치 - 타설 조인트 - 습기 지연층 - 다월 - 철근 - 신축이음 - 지반보고서에 근거한 지층 |
| LOD 400 | 객체 모델이 포함하는 사항 - 갈고리 및 접이음 포함한 철근 - 다월 - 모래기 및 마무리 상세 - 방수층 |</p>
<table>
<thead>
<tr>
<th>LOD 100</th>
<th>공간만 표시하는 수준의 모델</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOD 200</td>
<td>기둥 단면 형상 표현 수준</td>
</tr>
</tbody>
</table>
| LOD 300 | • 객체 모델이 포함하는 사항
 - 정확한 방향성을 갖도록 구조 부재의 주요 차수 포함
 - 연관된 정보 속성
 - 구조 강재의 강중
 - 연결 상태
 - 페인팅 종류 등 마감 내용 |
| LOD 350 | • 객체 모델이 포함하는 사항
 - 실제 높이와 연결부 위치
 - 거재트 플레이트, 앵커 등 주요 사항을 포함한 요소
 - 정확한 방향성을 갖는 부재
 - 복부 보강재, 슬리브 관통 등 주요 사제 |
| LOD 400 | • 객체 모델이 포함하는 사항
 - 용접
 - 캡 플레이트
 - 와셔 및 너트
 - 모든 연결 요소 |
[설비 모델링 예시 LOD]

<table>
<thead>
<tr>
<th>LOD 100</th>
<th>배치만 표현하는 수준의 개념 모델</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>LOD 200</th>
<th>대략의 크기, 형태, 위치를 포함한 개념 모델 수준 (성능은 속성 정보로 포함)</th>
</tr>
</thead>
</table>

| LOD 300 |
- 정확한 크기, 형상, 공간 및 배치 위치 모델링
- 앵커와 지지구조, 진동 및 내진 관련 고려사항에 필요한 대략의 공간
- 실제 접근 및 여유 공간 요구사항 |
|----------|---|

| LOD 350 |
- 설계된 정확한 크기, 형상, 공간 및 배치 위치와 연결부를 모델링
- 앵커와 지지구조, 진동 및 내진 관련 고려사항에 필요한 실제 크기, 형태, 간격 및 여유 공간
- 실제 접근 및 여유 공간 요구사항 |
|----------|---|

<table>
<thead>
<tr>
<th>LOD 400</th>
<th>제작과 현장 설치를 위해 필요한 부가적인 요소들을 모델에 추가</th>
</tr>
</thead>
</table>
(2)에 대하여: BIM 모델의 상세수준은 설계 단계에서는 주로 2차원 도면 작성과 수량 산출이나 간섭 점검의 활용 목적에 의해 설정될 수 있다. 수량 산출의 경우에는 전체 공사비에서 차지하는 비중이 높거나 경험에 비추어 수량 산출이 3차원 기반으로 수행되어 정확성을 높일 수 있는 경우에 대해서 모델링하도록 요구하고 LOD 수준을 설정하는 것이 바람직하다. 일반적이고 정형화된 구조물의 경우에는 2차원 도면 기반의 수량 산출과 3차원 모델 기반의 수량산출의 결과가 거의 차이가 없기 때문에 높은 상세 수준의 모델링이 요구될 필요가 없다. 모델링에 투여되는 시간이 과도할 수 있는 상세, 철근, 교통 표지판과 같은 수량 단위로 산정이 가능한 시설물 등은 특별히 필요가 없는 경우를 제외하고 설정하는 것이 바람직하다. 다만, 제품단위의 구조물이나 설비가 공급자가 수행하게 BIM 모델을 수준별로 제공할 수 있기 때문에 포함할 수 있다. 간섭 점검의 경우에는 설계 측면에서 간섭이 우려되는 공중이나 구간에 대해서만 부분적으로 철근, 정착구 등의 모델링 수준을 설정하는 것이 바람직하다. 아래에 제시된 표와 같이 단계별 BIM 활용 목적에 따른 공중 및 LOD 설정을 발주자가 제시하거나 발주자가 제시한 활용 목적이 따라 계약자가 BIM 실행계획서에 공종별 LOD 설정을 계획해서 제시하고 이에 따라 모델링 수행 및 품질 점검을 하도록 할 수 있다.

[BIM 활용 목적별 공중과 상세수준 작성 양식]

<table>
<thead>
<tr>
<th>공중</th>
<th>설계</th>
<th>시공</th>
<th>유지관리</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>BIM 활용목적</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>도면작성</td>
</tr>
<tr>
<td>교통공사</td>
<td>강구조작</td>
<td>강교재작</td>
<td>철근재작</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 48 -
(3)에 대하여: BIM 모델의 상세수준은 형상에 관한 표현 수준 뿐 아니라 모델링 과정에서 고려하는 속성이나 관련 정보에 대한 사항도 포함한다. 형상으로 표현되는 것뿐 아니라 실제 중요한 연결 상세나 여유 공간 등의 사항은 고려해야 하는 경우가 있다. 또한 수량 산출을 위한 모델링을 위해서도 실제 형상 이외에 추가로 모델에 반영해야 하는 사항으로 거푸집 면적 산정을 위한 면 모델에 대한 추가 정의 등이 포함될 수 있다. 유지관리 단계의 활용을 위해서는 시험 성적서 등의 문서 정보에 대한 연결 정보도 모델링의 정보로 포함될 수 있다.

4.3 BIM 모델 정보 요구사항 정의

(1) 사업의 주요 목표를 달성하기 위해 설정한 BIM 활용 목적에 따라서 BIM 모델로부터 추출되어 활용되어야 하는 정보 요구사항을 정의해야 한다. 이 정보 요구사항은 BIM 과업지침서, 입찰안내서 등에 반영될 수 있도록 기본적인 틀을 제공하게 된다.
(2) 정보 요구사항은 기술적 측면, 관리적 측면, 상업적 측면으로 구분하여 제시할 수 있다.

[해설]
(1), (2)에 대하여: BIM 모델링의 대상이 되는 공종의 선택과 더불어 각 모델 객체가 가져야 하는 속성 및 이로부터 도출되는 성과물에 필요한 정보는 요구사항으로 설정되어야 한다. 아래 표에서 제시한 것처럼 세 가지 측면에서 정보 요구사항 (EIR: Employer’s Information Requirement)이 제시될 수 있다. 이 정보 요구사항의 각 항목에 대한 제안 사항이 계약자가 제시하는 BIM 실행계획서에 나타나도록 요구해야 한다.

<table>
<thead>
<tr>
<th>구분</th>
<th>세부 항목</th>
</tr>
</thead>
<tbody>
<tr>
<td>기술적 요구 (Technical)</td>
<td>- 소프트웨어 플랫폼
- 협업 및 시설물관리시스템을 위한 플랫폼 정의
- 개방형을 지향하지만 사업관리시스템과 자산/시설...</td>
</tr>
</tbody>
</table>
설물 관리시스템으로의 데이터 교환을 위해 필요한 소프트웨어 버전 및 플랫폼 요구 가능
- BIM 실행계획서에 각 설계 부분별 솔루션 정의 포함하여 상호 통합 및 협업 가능하게 함
- 시공자 요구사항이 포함되는 경우에는 환경, 안전, 4D, 5D를 포함한 솔루션 및 버전 요구사항 포함

- 데이터 교환 포맷
 - 원본 파일
 - 개방형 파일 (IFC) 혹은 자산관리를 위한 COBie
 - pdf 파일
 - 동일한 데이터세트에서 산출된 파일 포맷이어야 함

- 조정 작업
 - 공간 좌표 공유로 인한 조정이 최소 요구사항
 - 차수 등 통합을 위한 표준 제시

- 상세 수준 (LOD)
 - 정보 요구사항의 수준 정의 (공정, 각 공정별 LOD, 공정별 데이터 수집, LOD 정의)

- 교육 훈련
 - 발주자 참여인력에 대한 추가로 요구되는 교육 정의
 (모델링, 해석 등 설계 검토 및 모델 활용 기술)

<table>
<thead>
<tr>
<th>관리적 측면 (Management)</th>
<th>표준</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 사업에서 산출되는 핵심 성과물에 대한 정의</td>
<td></td>
</tr>
<tr>
<td>- 통합건설정보분류체계 등 참고</td>
<td></td>
</tr>
<tr>
<td>- 설계관리시스템, 조달관련, 데이터보안, 자산관리 관련 기준 포함 여부 논의 필요</td>
<td></td>
</tr>
<tr>
<td>- 참여자 역할 및 책임 정의</td>
<td></td>
</tr>
<tr>
<td>- 정보관리 기준에 따른 역할 정의</td>
<td></td>
</tr>
<tr>
<td>- BIM 실행계획서에 포함</td>
<td></td>
</tr>
<tr>
<td>항목</td>
<td>설명</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>업무계획 및 데이터 분할</td>
<td>- 모델 관리, 명칭 체계 등 정보관리 기준에 맞는 입찰자 제안사항으로 포함</td>
</tr>
<tr>
<td>보안</td>
<td>- 협업 시스템 혹은 전자 문서 관리 시스템에서 요구하는 보안사항 준수 (레벨 1~4까지 정의가능)</td>
</tr>
<tr>
<td>조정 작업과 간섭검토 과정</td>
<td>- 소프트웨어, 절차, 책임사항, 결과물</td>
</tr>
<tr>
<td></td>
<td>- 기술 협의 절차</td>
</tr>
<tr>
<td></td>
<td>- 협업 오차 Stir</td>
</tr>
<tr>
<td></td>
<td>- 간섭 해소 절차</td>
</tr>
<tr>
<td>협업 과정</td>
<td>- BIM 실행계획서에 포함</td>
</tr>
<tr>
<td></td>
<td>- 정보 공유 형태</td>
</tr>
<tr>
<td></td>
<td>- 모델의 수준 (감소된 LOD로 공유가능)</td>
</tr>
<tr>
<td></td>
<td>- 협업과 정보 교환의 주기</td>
</tr>
<tr>
<td></td>
<td>- 모델 검토 및 협업 실무의 상세</td>
</tr>
<tr>
<td>안전 및 시공설계관리</td>
<td>- 공정 / 각 공정별 안전 핵심 관리 사항 / 재해예방 대비</td>
</tr>
<tr>
<td></td>
<td>- 사전 시공 정보 (PCI) / 설계로부터 리스크 평가</td>
</tr>
<tr>
<td>시스템 성능</td>
<td>- IT 관련 요구사항 (모델 크기, 소프트웨어, free viewer 정보, 보안)</td>
</tr>
<tr>
<td>법규준수 계획 (Compliance plan)</td>
<td>- BIM 실행계획서에 포함</td>
</tr>
<tr>
<td></td>
<td>- QA 절차, 모델의 관리 주기 등</td>
</tr>
<tr>
<td>자산정보 획득 전략</td>
<td>- 자산정보모델 (AIM) 및 정보교환 방안</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>상업적 측면 (Commercial)</th>
<th>데이터 및 사업 성과물 정의</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- 공정, 공정별 정보 취득, 데이터 취득의 주요 목적, 정보요구사항</td>
</tr>
<tr>
<td></td>
<td>- 단계별 요구사항에 맞는 데이터 취득 절차</td>
</tr>
<tr>
<td>발주자의 전략적 목표</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td></td>
</tr>
<tr>
<td>- 데이터의 주요 사용 목적 명시</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BIM 관련 역량평가</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 입찰서류에 BIM 관련 역량 평가 자료 포함</td>
</tr>
<tr>
<td>- BIM 수행실적 및 역량</td>
</tr>
<tr>
<td>- BIM 실행계획</td>
</tr>
<tr>
<td>- 기준에 따른 상세 절차</td>
</tr>
<tr>
<td>- 주요 협력사 및 예상 결과물 및 평가 절차</td>
</tr>
</tbody>
</table>
5. 설계 단계의 BIM 적용

5.1 설계 BIM 계획

사업 초기에 BIM 도입의 필요성에 따른 의사결정과 BIM 활용 목적 및 이에 따른 BIM 실행계획서는 설계 책임자가 제안하도록 한다.

(1) 발주자는 BIM 적용을 통해 얻을 수 있는 가치를 기준으로 모델 작성시기, 상세 정도, 요구사항, 파일 및 분류체계에 대한 표준, 평가 방법 및 절차를 규정해야 한다.

(2) 발주자는 BIM을 적용하는 시기를 계획 및 타당성 조사, 기본설계 및 실시설계, 공사관리, 유지관리단계로 설정하고 모델의 활용 범위와 방범을 명확하게 규정해야 한다. 운영 및 유지관리 단계에 활용하기 위해서는 기존의 유지관리 시스템과의 부합성을 검토하여야 한다.

(3) 발주자는 BIM 기술 적용에 따른 비용을 산정하는 적절한 절차를 마련해야 한다. 기존의 설계와는 다른 형태의 성과품을 생성하고 이 성과품이 발주자에게 추가적인 활용도를 제공하기 때문에 중요하고 준공모델을 정확하게 확보하여 유지관리에 활용할 수 있도록 비용 및 절차를 마련해야 한다.

[해설]
(1)에 대하여: 발주자가 가질 수 있는 BIM 기술을 통한 가치는 사업의 기획 및 타당성 조사의 신뢰성, 설계 품질, 사업관리의 수월성, 유지관리 비용 절감으로 크게 구분할 수 있다. 일반적으로 타당성 조사와 운영비용 측면에서 가장 큰 효과를 보이는 것으로 평가된다. 각 단계별로 요구사항과 성과품 등에 대해서는 계약사항에 세밀하게 포함되도록 해야 한다. BIM 기술을 사업 발주에 도입하기 위해 규정해야 하는 사항들은 다음과 같고 이에 따른 실행계획서의 항목을 표로 정리하였다.

1. BIM 모델의 활용 가능한 범위 규정
2. 모델에 대한 요구사항
3. 도면 및 모델링 작성 규정 (Drawing Protocol)
4. 간섭 해소 절차
5. 설계 문제점에 대한 해결 절차
6. 분야 및 용도별 3차원 모델
7. 모델의 통합 방안
8. 요소 혹은 시스템간의 충돌 발생시 해결 방안
9. 발견된 문제점에 대한 해결 절차 및 문서화

<table>
<thead>
<tr>
<th>BIM 사업 실행 계획의 개요</th>
<th>실행 계획의 주요 목적 제시</th>
</tr>
</thead>
<tbody>
<tr>
<td>사업 정보</td>
<td>사업명, 위치, 사업의 개요, 주요 일정</td>
</tr>
<tr>
<td>주요 사업 담당자</td>
<td>주요 사업 참가자의 연락 정보</td>
</tr>
<tr>
<td>사업의 목적/BIM 목표</td>
<td>사업에서 BIM의 전략적 가치와 용도</td>
</tr>
<tr>
<td>조직의 역할 및 참여자</td>
<td>사업의 단계별 BIM 계획과 실행 과정의 관리자 및 역 할 규정</td>
</tr>
<tr>
<td>BIM 절차 설계</td>
<td>process maps을 통한 실행 절차 규정</td>
</tr>
<tr>
<td>BIM 정보 교환</td>
<td>정보 교환 요구사항들에 BIM 용도에 맞는 모델 요소와 상세 수준을 명확하게 규정</td>
</tr>
<tr>
<td>BIM과 정보 요구사항</td>
<td>발주자의 BIM 요구사항</td>
</tr>
<tr>
<td>협업 절차</td>
<td>전산과 협업 활동의 절차 규정</td>
</tr>
<tr>
<td>모델 품질 관리 절차</td>
<td>정의된 요구사항을 사업 참가자들이 만족시키도록 하는 품질 관리 절차 규정</td>
</tr>
<tr>
<td>기술적 인프라 요구사항</td>
<td>하드웨어, 소프트웨어, 네트워크</td>
</tr>
<tr>
<td>모델 구조</td>
<td>모델 구조, 파일명 구조, 관리 시스템, 모델 표준</td>
</tr>
<tr>
<td>사업 성과물 관리</td>
<td>발주자에게 전달해야 하는 성과물 규정</td>
</tr>
<tr>
<td>전단 전략 및 계약</td>
<td>BIM 결과물 전달 전략 및 관련 계약 사항 규정</td>
</tr>
</tbody>
</table>

(2)에 대하여: 현재의 기술 수준으로는 2차원 도면 기반의 설계와 3차원 설계가 병행하는 단계에 있기 때문에 사업의 대상이 되는 모든 영역을 3차원으로 모델링하거나 투자대비효과가 적은 상세에 대해서 모델링하지 않도록 의사결정을 하는 것이 중요하다. 이는 설계 책임자가 사업의 주요 목표와 민
원, 예산, 공기, 안전의 주요 사항을 파악하여 이를 해결하는데 도움이 될 수 있도록 BIM 활용 목표를 설정하고 이에 따른 모델 상세수준과 정보 요구사항을 제시하는 것이 중요하다. 납품된 3차원 BIM 모델 및 이에 연계된 전자도면 등의 성과품을 도로공사의 시스템 내에서 관리해야하기 때문에 기존 정보 시스템과의 부합성을 고려해야 한다. BIM 활용 목표를 명확하게 제시하고 이를 구현하기 위한 방법론 및 관련 소프트웨어 환경은 계약자에게 맞기는 것이 바람직하다.

(3)에 대하여: BIM 소프트웨어를 사용하여 모델을 설계하게 되면 모델 상세수준에 따라서 활용도와 효율성이 달라진다. 따라서 설계자가 모델의 작성을 효율적으로 수행하고 이로부터 여러 가지 BIM 활용 목표를 달성할 수 있도록 유도하기 위해서는, 기존의 설계비용 산정에서 이를 반영해줄 수 있는 방안을 강구하여 추가로 투입되는 시간에 대한 엔지니어링 대가 산정 기준을 적용하는 방안이 필요하다. Shop drawing, 안전관리 등의 기존 비용을 활용하거나 유지관리를 위한 모델 납품시 추가 성과품에 대한 비용을 반영하는 방안, 설계/시공 분리발주의 경우에 발주자가 설계시에 작성된 모델을 시공사에 제공하고 시공사는 이 모델기반으로 설계자에게 공사 관리를 위한 모델 변경에 따른 비용을 지불하는 방식 등을 고려할 수 있다. 설계시 납품된 BIM 모델은 사업을 수행할 시공사에게 제공하여 시공 BIM 모델로 변환해서 활용하도록 하고 준공시에 준공 BIM 모델로 제출받아서 유지관리용 BIM 모델로 활용하도록 설정하는 것이 필요하다.
5.2 설계 단계 BIM 활용

(1) 사업 기획단계에서는 관련 기관 협의, 사업성/환경영향 검토, 민원, 예산 및 공기 검토에 활용할 수 있다. 노선에 대한 설계 대안을 다양하게 검토할 수 있고 각 구간별 사업 진행에 어려움을 초래할 수 있는 여건들을 고려하는데 활용할 수 있다.

(2) 설계단계에서는 기본적으로 도면 추출, 주요 수량 산출, 시공성 및 안전성 검토가 가장 중요하다. 수량 산출을 위한 BIM 모델 상세 수준 정의는 전체 공사비에서 차지하는 비중이 아주 낮은 부분이나 2차원 기반의 평가로도 정확하게 산정되는 부분을 제외하고 설정해야 한다. 3차원 모델로부터 2차원 도면을 추출하거나 3차원 모델에서 간섭 검토 등을 하도록 하는 경우에도 비정형, 복잡 상세 부위 등에 국한해서 설정하는 것이 바람직하다. 설계 단계에서 시공성 및 안정성 검토 부분은 개념적인 수준에서의 검토를 수행할 수 있고 상세한 검토는 시공 단계에서 수행하도록 한다. 이러한 검토는 3차원 모델 및 GIS 기반으로 종합검토체계를 구축하여 수행하면 동시 협업을 통해 시간과 공간의 제약 없이 수행할 수 있다.

(3) 설계 성과품에 대한 검토시 설계 검토 리스트가 있는데 이를 3차원 모델 기반의 시각화를 통해서 정확하고 효율적으로 수행할 수 있다. 이를 위해서는 모델링 요구사항에 검토 항목을 제시하여 이를 MVD (Model View Definition)로 구현하도록 요구할 수 있다.

(4) 설계 승인이 된 결과물에 대해서는 전자도면 형태로 변환하여 사업관리, 관계기관 협의, 유지관리 시스템 활용 등에 사용하도록 하는 것이 바람직하다. 제품이나 특정 공법 단위로 사용되는 경우에는 상세 수준별 모델을 함께 제공하도록 요구하여 설계의 효율성과 향후 유지관리 활용성을 확보할 필요가 있다.

[해설]
(1)에 대하여: 국가 GIS 사업과 전자지형도 구축 등 국내의 광범위한 디지털 정보는 도로 계획 단계에서 좀 더 면밀한 검토를 가능하게 하는 토대가 되고 있다. 이에 따라서 신설 도로 계획서 예산 확보를 위한 관련 기관 협의
한국도로공사

및 타당성 검토에 적극 활용하는 것이 바람직하다. 각 노선 대안별로 예산 및 공기 평가, 예상 민원 및 환경성 평가 등을 동시에 진행할 수 있고 이를 관련된 전문가와 협업 환경 하에서 검토하여 사전에 문제점을 해소하는 절차를 가질 수 있다. 또한 관련 지역의 주민들을 대상으로 가상의 도로 건설 및 완공시의 사업 혜택에 대한 설명을 통해서 사업 타당성의 지원을 받을 수 있다. 도로 건설 과정이나 완공시 제기될 수 있는 민원 사항으로 소음, 일조 피해 등에 대해서도 기본적인 개념 모델 수준에서 시뮬레이션을 통한 검토가 가능하다.
초기 협의를 위한 가상 구간 구축

사업 구간 일조표해 시뮬레이션 검토 예

(2)에 대하여: 최근의 설계의 추세는 미적 고려를 강화하고 다음 세대에 유산이 될 수 있는 창의적인 설계이다. 신설 사업의 감소는 설계단계에서 좀 더 많은 시간과 비용을 투자하여 사용자 친화성, 환경성, 지속 가능성을 확보하는 노력을 기울이게 한다. 이에 따라서 곡선이나 비정형 구조물이 증가 추세에 있는데 2차원 도면의 정확한 작성이 어렵게 되는 요인이 되고 있다. 아래의 예를 보듯이, 기술자의 직관에 의한 도면 작성은 정확한 형상 표현 및 전달에 한계가 있기 때문에 이러한 구조물이 설계에 포함될 경우, 도면 생성을 3차원 모델로부터 하도록 요구해야 한다. 물론, 이로부터 도출된 주요수량도 정확하게 되고 향후 시공시 거푸집 및 철근 상세를 계획하는데 유용하다.
3차원 모델로부터 건적을 수행하는 것은 수량산출로부터 출발하는데 자동수량산출이 가능한 부분이 있고, 산출된 수량으로부터 산식을 통해 산출하는 부분이 있다. 또한, 2차원 도면으로부터만 산출되는 수량도 있기 때문에 BIM 활용 목표를 설정할 때 공사비에 영향을 주는 주요 항목으로 설정하고 설계자가 최소한의 수량산출의 적정성을 검증하도록 요구하고 그 이상의 정확성은 자율에 맡기는 것이 현실적이다. 특히, 모델링 시간에 많은 시간이 소요되는 철근상세, 교통표지판 등의 도로시설물 등은 반드시 필요한 경우가 아니면 기존 방식을 담으로 활용하는 것이 설계생산성 측면에서 바람직하다. 제품 혹은 공법 단위로 제공되어 상세 수준이 높은 3차원 모델이 이미 확보된 경우에는 이에 기반한 정확한 수량산출이 요구될 수 있다.
설계에서 간섭 검토는 가장 효과적으로 3차원 모델을 활용하는 방안으로 국제적으로 많이 활용되고 있고 기본적으로 설계 결과물의 시공성 검토에 요구되는 항목이다. 다만, 일반적인 교량 거더나 바닥판과 같이 이미 시공성에 대한 검토가 이루어져서 추가적인 검토가 필요 없는 경우에는 제외하는 것이 바람직하다. 철근에 대한 시공 상세도를 3차원 모델로부터 도출하는 경우에는 BIM 모델링 요구사항에 포함될 수 있는데 이는 설시설계 단계에서 신중하게 결정되어야 한다. 설계 기본 안이 결정되면 시공성에 우려가 있는 부분들을 선정하고 이 구간에 대해서는 상세 모델링을 통한 시공성 검토와 그
결과를 간섭검토 보고서로 제출하도록 요구할 수 있다. 아래 예시에서는 현 재의 설계기준에서 제시한 철근 상세 규정을 만족하도록 모델링을 수행하고 이에 따른 간섭검토, 설계 변경, 도면 작성, 수량 산출의 절차를 보여준 것이다.

철근 모델링 및 사공성 검토 예

사업의 규모가 증가하여 의사결정의 절차가 복잡하거나 관련 기관 협의가 많은 경우에는 의사결정이 가능한 전문가 그룹이 공간적으로 모여서 협의 혹은 원격으로 사업 구간에 대한 가상 모델을 시각화하여 검토할 수 있는 시스템이 유용하다. 세계적으로 BIM CAVE, 홀로그램, 3차원 프린팅 모형 등 을 활용하는 사례가 증가하고 있다. 해외 사업의 PMC 등에도 활용할 수 있 고 오랜 기간 경험을 갖고 있는 전문가를 최대한 활용할 수 있는 방안으로 3차원 종합설계검토시스템을 구축하여 활용하는 것이 바람직하다.
(3)에 대하여: 설계단계에서 발주자가 하는 가장 중요한 역할은 설계 결과물을 검토하는 것이고 실무에서의 기술 변화, 법규 및 자체 규정의 변화 등이 종합적으로 파악된 상태에서 실시되어야 한다. 2차원 도면 기반의 검토가 가진 한계가 존재하기 때문에 현재 운영 중인 설계 검토 리스트를 각 사업별로 초기에 검토하여 BIM 기반의 검토 항목을 선정하고 이를 모델링 주체에게 요구해 시각화하여 제출하도록 요구할 수 있다. 이를 통해 설계 검토의 정확성과 효율성을 확보할 수 있다. BIM 모델 납품시에 함께 제공받아야 하는 뷰어를 통하여 구현될 수 있어야 한다. 최근의 BIM 솔루션과 이론 기능은 효과적으로 구현할 수 있기 때문에 설계의 주요 검토 항목에 대해서 수행할 필요가 있다.
교량하부 공간에 대한 검토 예

<table>
<thead>
<tr>
<th>구분</th>
<th>Check List</th>
<th>학원</th>
</tr>
</thead>
<tbody>
<tr>
<td>교량기초</td>
<td>발특의 규격, 재량, 간격 및 가수는 적절한가?</td>
<td></td>
</tr>
</tbody>
</table>

발특에 대한 설계 검토 예

MVD기반 설계검토리스트

Linked 구조계산서 (Excel)

Linked 수강산출서 (Excel)
교량 난간방호벽에 대한 검토 예

(4)에 대하여: 설계 단계에서 BIM을 활용하면 이 결과물이 다른 업무에 다양하게 이용되어야 BIM의 투자대비용이 극대화될 수 있다. 이런 관점에서 관련 민간 기업의 BIM 도입을 촉진하고 생태계를 구축할 뿐 아니라, 사업 진행 과정에서 관련 기관 협의, 시공단계에서의 활용, 유지관리 시스템 탑재, 현장에서의 모바일 활용 등을 위해 2차원 도면으로 파악하기 힘든 경우에 한해 서 3차원 전자도면을 작성하여 활용할 수 있다. 이는 장기적으로 도로공사가 관리하는 모든 시설물에 대한 전자도면 및 문서 관리 시스템으로 연계되어야 한다. 시설물 관리주체가 최근에 가장 관심 있게 BIM을 활용하는 것이 자산관리시스템이기 때문에 설계단계에서부터 이에 대한 대비를 할 수 있도록 전자도면 체계를 갖추어야 한다.
3차원 모델의 장점은 시각화이고 2차원 도면의 주요 활용도는 전수의 확인이다. 따라서 설계 담당자는 작성해야 하는 도면 목록에서 3차원 시각화를 통해 효율성을 확보할 수 있는 경우를 선정하여 아레 예시와 같이 2차원 도면과 3차원 모델을 함께 표현하는 전자도면을 작성할 수 있다. 이 전자도면은 더 이상 설계 변경이 없는 설계 승인 단계나 납품단계에서 이루어져야 한다. BIM 모델 납품시 이를 검토할 수 있는 뷰어가 제공되지 못하는 경우에도 3차원 PDF 파일 형태로 검토를 수행할 수 있다. 영국의 Crossrail 사례에서와 같이 대규모 사업에서는 설계자가 참여하는 다양한 수준의 기술자와 의사소통을 하거나 작업 지시를 할 때 BIM 솔루션 활용을 요구할 수 없기 때문에 발주자의 승인이 난 설계 결과물에 대해서 3차원 전자도면 형태로 제공하여 효과적으로 사업을 수행한 사례를 참고할 수 있다. 3차원 BIM 모델의 소유권에 대한 법률적 고려를 해야 하는데 발주자 이외의 주체가 이를 활용하기 위해서는 별도 계약 및 합의절차를 통하거나 전자도면(원본제외) 형태로 제공하여 설계자의 모델링 저작 기술에 대한 보호를 고려하는 것이 바람직하다.
전자도면 작성 형태의 예

갖기 부 집수정 (4)
형식-2 철근상쇄도 (K=900, D'=600일때)

표준도의 3차원 전자도면화 예시
5.3 BIM 성과물 정의

(1) 설계도서 납품 기준은 한국도로공사의 기존 체계를 그대로 유지하고 추가적으로 3차원 모델의 활용목적에 따라 제시된 모델 원본 파일, 중립형태의 파일, 이 모델로부터 추출된 추가 성과물을 제출하도록 한다. 이 경우, 사용 소프트웨어의 버전을 명시해야 한다.

(2) BIM 모델의 일관성 있는 상세 수준과 정보를 규정하고 다양한 BIM 소프트웨어의 활용을 보장하기 위해서 발주자의 정보요구사항과 모델 상세수준, 활용 목적 달성이 가능하도록 작성된 BIM 템플릿을 기반으로 성과물을 정의한다. BIM 템플릿은 한국도로공사의 전산설계도서 표준지침에 따라 작성한다.

(3) 시공과정에서의 BIM 활용이나 유지관리 단계에서 자산관리 시스템 차원에서 활용하기 위한 BIM 모델과 시뮬레이션 등의 추가 성과물은 과업지시서에 명시하고 이를 활용할 수 있는 소프트웨어를 함께 제공받아야 한다.

[해설]
(1)에 대하여: 기존의 2차원 도면 기반의 납품 체계는 활용하고 추가로 모델 기반으로 도출되는 성과물에 대해서 추가 제출 내용을 정의해야 한다. 원칙적으로 발주시에 허용 가능한 소프트웨어와 그 버전의 목록을 제시하는 것이 바람직하다. 모델 원본 파일은 검토나 자체적인 활용을 위해 Viewer를 함께 제공받는 것이 필요하다. 중립파일 형태의 모델은 변환가능하고 활용 가능한 경우에 한해서 요구하는 것이 현실적이다.

(2)에 대하여: 개방형 BIM이 현재 가진 한계점으로 인해서 단일 솔루션 기반의 BIM 업무 발주를 하기 힘든 경우에 제시된 대안으로, 현재 상가품에서 수행하고 있는 BIM 템플릿이다. 상가품 BIM 템플릿은 건축, 구조, MEP 분야별로 활용 가능한 BIM물의 템플릿을 명시하고 있으며, 이는 BCA(Building&Construction Authority, 건설청)에서 각 벤더 사에 상가품 BIM 가이드라인에 따라 활용할 수 있는 가이드와 템플릿을 요구하여 발행하고 있다.
1 건축분야 : Revit(2011~2015), ArchiCAD(v15, v17, v18), AECOsim(v8i)
싱가폴 발주처와 벤더 사의 BIM 템플릿 구성 사례와 같이 한국도로공사의 BIM 가이드라인의 요구사항을 고려하여 벤더 사에서 해당 소프트웨어에 활용할 수 있는 BIM 템플릿을 제공할 수 있도록 허용한다. 이러한 과정을 통해 BIM 가이드라인과 BIM 템플릿은 엔지니어링 사에서 BIM 설계도서 납품시 참고하여 작성할 수 있도록 한다. 초기에 관련 기업과의 업무 협약을 통해 소프트웨어의 버전이 바뀔 때마다 제공을 받을 수 있는 체제를 마련하는 것이 바람직하다.
예를 들어, 오토데스크 솔루션 기반으로 작성한 사례를 제시한다. BIM 템플릿은 한국도로공사의 전산설계도서 표준지침에 따라 작성하며, 사업 시작, 지형, 주석 및 심벌, 레이어 등에 대한 예시를 설명한다.

① 사업 시작

사업 시작 전에 한국도로공사의 BIM 표준도각을 확인하여 성과물 납품을 위한 도각을 BIM 프로그램에 설정한다.

Revit의 경우, 엔지니어가 템플릿을 활용하여 모델링할 수 있도록 Project Browser에 뷰 구성은 평면, 종단, 횡단, 3D, 상세 등으로 구성하며 Sheet의
경우 한국도로공사 BIM 표준도각을 패밀리로 링크하여 템플릿을 구성한다.

Revit의 도각 설정(싱가폴 BIM 템플릿)

Civil 3D의 경우, 기존의 2D 캐드에서의 도각 활용방법과 같이 한국도로공사 BIM 표준도각을 Import하여 평면 및 종단면도, 횡단면도를 생성한다.

Civil 3D 도각 설정

② 지형 구성

3D 지형 모델링은 수치지도, 지질도, 3D 측량 등 자료의 등고선, 표고점 등을 이용하여 TIN을 생성한다. 생성된 지형의 객체 모델은 지표면의 평형이
표현될 수 있는 객체로 구성한다.

<table>
<thead>
<tr>
<th>수치지형도</th>
<th>객체모델</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

전산설계도서 표준지침서의 지형 모델링

Revit은 수치지도 파일(dwg)을 ‘Link CAD’ 기능을 활용하여 불러오며, 수치지도 파일을 3D 지형으로 생성하기 위해 ‘Toposurface’ 기능을 통해 지형 생성을 위해 기준이 되는 레이어를 선택하면 면형이 표현된 지형을 생성할 수 있다.

지형 구성
Civil 3D는 수치지도 또는 측량데이터를 불러와서 TIN 지표면으로 생성하며, 이를 3D 뷰를 통하여 지표면이 면형이 표현된 지형으로 확인할 수 있다.

Civil 3D의 지형 구성

③ 주석 & 심벌
설계 도면에 필요한 주석 및 심벌은 축척, 선, 해칭, 문자 및 폰트, 치수 및 지시선, 각 분야별(공통, 건축, 도목, 전기, 조경, 기계, 통신) 심벌로 구성되어 있으며, 전산설계도서 표준지침서에 따라 작성한다. 예를 들어 축척의 경우 전체 도면명의 우측 위쪽에 아래 기준과 같이 표기하며, 2개 이상의 도면이 제도영역에 작성된 경우 각 도면의 축척을 도면명 우측에 표기한다.

[전산설계도서 표준지침서의 축척형식의 종류]

<table>
<thead>
<tr>
<th>이중 축척형식</th>
<th>단일 축척형식</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>1</td>
<td>30</td>
</tr>
</tbody>
</table>

Revit은 표준지침서에 따른 주석 또는 심벌 중 적절한 패밀리 라이브러리를 로드하여 활용하며, Civil 3D는 캐드 라이브러리를 Import하여 활용한다.
4 레이어

설계 도면에 사용되는 모든 레이어는 한국도로공사 레이어 체계에 따라 고유의 코드를 부여하며, 지침의 각 분야별로 레이어 색상 및 선 종류 스타일 을 따른다.
전산설계도서 표준지침서의 레이어 체계

<table>
<thead>
<tr>
<th>코드</th>
<th>분류</th>
<th>설 명</th>
<th>형식</th>
<th>적용</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>대분류</td>
<td>골목, 토목, 건축(A), 건기(E), 시설관리(F), 일반(G), 지리정보(H), 실내건축(K), 표장(L), 기계(M), 기타분야(N), 구조(O), 축량(Q), 통신(T)</td>
<td>영문/수자</td>
<td>필수</td>
</tr>
<tr>
<td></td>
<td>중분류</td>
<td>골목, 일반(2), 구조물(3), 종업(4), 횡단면(5), 통치(L), 기타(X)</td>
<td>필수</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>토목, 흙길로(7), 위험구조(A), 토양(8), 토목시설(F), 유해수질(9), 서수도공(W), 하수도공(N), 포장공(10), 부대공(M)</td>
<td>필수</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>건축, 일반건축(A)</td>
<td>필수</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>기계, 세관조회(H), 위생설비(E), 소방설비(F), 기타(M)</td>
<td>필수</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>건기, 배전설비(D), 소방전기(F), 화면설비(T), 원, 격납자동차계(O)</td>
<td>필수</td>
<td></td>
</tr>
<tr>
<td></td>
<td>통신, 통신설비(T), 통신선로(D), 정보제한장치(C), 방송및수신(B), 방재및보안(D)</td>
<td>필수</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>소장</td>
<td>소장(F)</td>
<td>필수</td>
<td></td>
</tr>
</tbody>
</table>

전산설계도서 표준지침서의 레이어 체계

Revit는 설계도면의 가시성 점토 기능을 이용하여 해당 도면의 개체별 선 스타일, 색상, 투명도 등을 설정할 수 있으며, Civil 3D는 캐드와 동일한 레이어 기능을 활용할 수 있다.

![Revit의 가시성 점토 기능](image)

Revit의 가시성 점토 기능(싱가포르 BIM 템플릿)
⑤ 성과물 내보내기
설계도면의 성과물은 2D 설계도서와 BIM 설계도서로 구분되며, 전산설계도서 표준자침서에 따른 폴더 구성 및 파일 형식을 따른다. BIM 설계도서의 경우 파일형식에 따라 폴더가 구성되며, 요구되는 파일 형식을 해당 BIM 툴에서 내보내기하여 저장한다.
Revit 및 Civil 3D의 경우 BIM 데이터를 통해 추출된 설계 도면데이터를 벡터로 표현하기 위해 모든 뷰의 속성을 ‘Hidden Line’으로 적용하며, 납품에 필요한 파일 형식을 선택하여 내보내기한다.

Revit 및 Civil 3D의 성과물 내보내기

(3)에 대하여: BIM 모델로부터 생성할 수 있는 성과물은 다양하기 때문에 업무지시서에서 BIM 실행계획서에 기반하여 관련 성과물과 내용을 정확하게 제시하여야 한다. 특히, 준공도서 제출시의 준공상태 BIM 모델과 전자도면 등의 연계된 정보는 유지관리 시스템의 데이터 구조를 고려하여 납품 받아야 한다.

- 객체모델 성과자료 저장의 폴더의 기본구성은 2D 성과물 폴더구성과 동일하며 저장 DATA 형식에 따른다.
구성폴더는 “원본, IFC, LandXML, 폴더명”의 형식을 갖는다. 폴더 내의 자료는 상세공 폴더에 따른 분류로 순차 확장하여 폴더를 구성한다.

예) 원본파일

예) 개방형 BIM 파일: LandXML, IFC
5.4 BIM 품질관리

(1) BIM 모델의 품질검사는 실시설계 단계 이후에 수행하고 납품시에 수행하는 것을 원칙으로 하고 이에 대한 시기, 항목, 방법은 BIM 실행계획에 포함한다. BIM 모델이 과업지시서의 정보요구사항, 상세수준, 활용 목적을 달성하도록 정확하게 생성되었는지를 관리하는 것은 계약자가 사전에 검토하여 품질 검증 결과 보고서를 제출하고 이를 발주자, 혹은 발주자를 대리하는 전문가가 검토하여 관리한다.

(2) 발주방식에 따라서 설계승인을 발주자가 하고 이 결과를 시공사가 수행하는 경우에는 설계변경이 모두 반영되고 승인된 설계에 대해서 BIM 모델을 검증하고 이에 기반한 후속 업무가 진행되도록 해야 한다. 승인된 모델은 전자서명을 하는 등의 절차가 필요하다.

(3) 품질 검사는 계약자가 감독원과 협의하여 품질관리 대상을 구체적으로 정하며 물리정보, 논리정보, 데이터 품질의 항목에 대해서 수행한다.

(4) BIM 데이터의 품질 검증 절차가 설계 결과물의 품질을 보장하는 것은 아니기 때문에 설계 품질에 대한 책임은 계약자에게 있다.

(5) BIM 품질 검증 보고서는 다음과의 내용을 포함하도록 한다.
 - 수행환경: BIM 업무수행 환경(작업 조직, 사용 SW 등)
 - 파일 성과물: BIM 데이터 파일 목록
 - 산출물 상세: BIM 산출물의 목록 및 수행계획서 대비 적용 범위 및 수준
 - 특이사항: 설계 오류 등 발생한 이슈 사항
 - 품질 검증 항목

[해설]

(1)에 대하여: BIM 모델을 활용한 설계에서 모델의 정확성 및 적절성은 매우 중요하기 때문에 반드시 검증되어야 한다. 계약자가 BIM 성과물을 제출하기 전에 과업지시서의 사항들에 부합하는지와 수량산출 등 정량적 평가의 간략 계산 등과 비교하여 정확성을 검토하고 이를 BIM 검토보고서 형태로 작성하여 제출하도록 한다. 이때 감독원의 검토를 위한 뷰어를 함께 제출하도록 하
고 복잡한 사업인 경우에는 전문가를 선임하여 모델의 구성 체계, 정보의 적절성, 상세 수준의 적절성을 검증하도록 의뢰할 수 있다. 싱가폴의 경우, BIM 실무자 및 전문가 그룹을 사전에 선임하여 전자납품 체계 내에서 24시간 검토하여 제출자에게 그 결과를 알려주고 수정할 수 있도록 하고 있다.

(2)에 대하여: BIM 모델로부터 다양한 업무가 진행될 수 있기 때문에 업무 절차별 성과물의 제출, 검토, 승인의 절차가 규정되어야 한다. 승인된 모델은 변경이 불가하도록 전자서명 등의 절차를 통해 확정하는 방안이 필요하다. 이후 사업 참가자들에게 공유하여 후속 업무를 진행할 수 있다. 전자서명과 같은 작업은 모델의 작성자, 검토자, 승인자를 명확하게 명시할 수 있는 장점이 있다.

영국의 사례

(3)에 대하여: BIM 모델은 과업지시서에 포함된 과업지침서의 요구사항과 BIM 실행계획서의 모델링 방법론에 근거하여 아래의 세 가지 항목을 주로 검토한다. 뷰어를 통해 수동적으로 수행하거나 검증하는 소프트웨어를 활용할 수 있다.

- 물리정보 품질: 모델의 형상요건 충족성 (간섭충돌 등)
- 논리정보 품질: 모델의 논리요건 충족성 (설계오류 등)
데이터품질 : 모델의 데이터요건 충족성 (형상 및 속성정보 등)
품질 검증은 수행하는 검토 항목은 아래와 같이 예시로 제시할 수 있는데, 이는 BIM의 활용 목적에 따라 선택적으로 적용해야 한다. 활용 목적 달성에 이상이 없는 경우에는 만족하는 것으로 간주할 수 있다. 표준화된 포맷 변환용 문제가 발생하고 이로부터 활용이 불가능한 경우가 발생하면 원인을 평가하여 최종적인 문제점은 BIM 품질 검증 보고서에 기록한다.

◇ 품질검토 체크리스트(예시)

<table>
<thead>
<tr>
<th>구분</th>
<th>품질 검증 항목</th>
<th>이상 유무</th>
<th>비고</th>
</tr>
</thead>
<tbody>
<tr>
<td>물리정보품질</td>
<td>1. 간섭 검토</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 동일 부재의 간섭 확인(중첩 검수)</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 다른 부재간의 교차 간섭 확인(충돌 검수)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. 원본 모델 객체의 위치 및 형상 검수</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 내역서와 도면표기에 의한 위치정보 일치 검토</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 도면의 초수 및 형상과의 일치 검토</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>논리정보품질</td>
<td>1. 공종 객체에 따른 속성정보 부여 정합성 검토</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 표준분류체계 기준에 따른 속성정보를 가지고 있는지 검토(객체 일람표등 활용)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 속성정보의 누락 및 오타 검토</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. 물량산출 비교표</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 2D 내역과 BIM 물량산출 비교표 제시</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 물량 오차 발생한 부분에 대한 근거 제시</td>
<td></td>
<td></td>
</tr>
<tr>
<td>데이터품질</td>
<td>1. BIM 객체 형상 및 LOD 수준 검토</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 도면에 표현된 지수 및 형태와 일치 하는지 검토</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 수행계획서의 기준 대비 형상의 LOD 수준 검토</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. 물량 산출 결과 검토</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 수행계획서 대비 각 공종에서 요구되는 BIM 데이터의 물량 산출 결과 검토</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. IFC 변환 데이터 검토</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 변환 객체 위치 오류 여부 검토</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 원본 데이터 객체 수량 대비 IFC 변환 수량 검토</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. 데이터 용량 제한 검토</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 원본 데이터 용량 100MB 초과 시 파일 분할 검토</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 시스템 업로드가 가능한 파일 용량인지 확인</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
6. 시공 단계의 BIM 적용

6.1 사업관리 BIM 계획

(1) 설계단계에서 BIM이 활용된 사업인 경우에는 납품된 모델을 활용한 사업관리 BIM 활용계획을 수립하여야 한다. 이 계획은 사업관계 절차와 연계되어 공정회의 등에 활용되어야 한다.

(2) 시공단계에서는 시공 상세도 작성이 주목적이 될 수 있다. 정기적으로 수 행하는 공정회의에서 사전시공(pre-construction) 검토를 BIM을 통해 수행하여 사전에 문제점을 파악하여 해결할 수 있다. 안전관리도 사업의 성격과 현장의 현황을 파악하여 주요 관리 항목을 도출하고 이에 대한 대비 차원에서 안전관리 방법으로 감독원, 감리, 시공 참여 기술자 및 인력에 대한 의사소통의 수단으로 활용될 수 있다.

(3) BIM 모델을 활용한 추가적인 업무 효율성 확보는 검측시 형상 및 좌표 확인, 레이저스캔을 통한 현황 모델 및 정기적인 현장 모델 구축, 사업 홍보 및 민원 대응이 가능하다.

[해설]
(1)에 대하여: 시공 단계에서 4D와 같이 공정 관리를 위해 별도로 BIM 모델링을 수행할 수도 있지만 효율성 측면에서는 설계단계에서 구축된 모델을 일부 재활용하는 것이 바람직하다. 이를 위해서는 앞서 설명한 것처럼 설계 단계에서 BIM의 활용목적을 사업 전체를 고려하여 설정하고 관련된 모델링 요구사항을 제시해야 한다. BIM 도입단계에서 가장 유효한 활용방안은 3차원 모델을 활용한 공정회의와 현장에서의 작업자 교육 및 안전관리를 위해 작업자 확인용 스마트 박스 혹은 모바일 체계를 운영하는 것이다.
건설현장 계획시의 BIM 적용은 3D 보행경로 또는 4D 시뮬레이션을 사용하여 하도급 투자와의 의사소통에 도움을 줄 수 있다. 건설현장 계획시의 BIM 적용방법은 아래 순서와 같다.

<table>
<thead>
<tr>
<th>단계</th>
<th>설명</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>지형, 기존 시설물, 저장물 및 환경조건을 포함한 사업 대상 지역의 가상모델을 작성한다.</td>
</tr>
<tr>
<td>2</td>
<td>가시설 등 안전이나 공정관리 측면에서 중요한 부분의 세부 모델링을 통해서 참여 기술진의 이해를 돕는다.</td>
</tr>
<tr>
<td>3</td>
<td>3차원 모델 기반으로 현장검측이나 업무의 위치에서의 좌표 도출 등의 현장 작업에 활용한다.</td>
</tr>
</tbody>
</table>
(2)에 대하여: 능동적으로 공정에 대한 대안 검토가 가능한 형태의 공정 시뮬레이션을 운영하는 것이 공기 제약 요인이 있는 사업에서는 중요하다. 완성된 구조물이나 시설물의 간섭 검토뿐 아니라 시간에 따라 동일한 공간을 점유하는 장비나 가시설 등 충돌 사항에 대한 검토도 사전에 수행하는 것이 필요하다. 기존 시설물과의 간섭이나 안전관리 문제는 시설물 관리주체가 다를 경우에 협의와 승인 절차에 효과적으로 활용될 수 있다. 일반적으로 공정관리의 활용 주체는 시공사가 되겠지만 사업 관리를 위해 감독원이 이를 활용할 수 있고 이를 위한 뷰어는 모델 남용시 함께 제공하도록 설정해야 한다. BIM 모델을 활용한 안전관리는 6.3에서 설명하였다.
(3)에 대하여: 3차원 BIM 모델의 가장 중요한 활용 방안은 어느 위치에서나 좌표를 확인할 수 있다는 것이다. 이는 현장에서 검측과 같은 확인 작업에서 유용하다. BIM 납품 성과물로부터 확인해야 하는 좌표나 차수의 목록을 만들고 수치를 도출하여 현장에서 확인하는 절차에 활용할 수 있다. 복잡한 구간의 공사의 경우에는 현장의 전체적인 여건을 언제나 파악할 수 있도록 아래 예시와 같이 가상 현장 모델을 구축하는 방안이 효율적이다. 기존 시설물과의 이격 거리가 작아 공사의 난이도가 높고 시공 중 안전에 대한 우려가 높은 경우에는 레이저 스캔을 통한 현황 모델을 정확하게 구축하고 신설 구조물의 위치 확인, 가상 시뮬레이션을 통한 작업자 교육을 사전에 실시할 수 있다.
6.2 BIM 공정관리

(1) BIM 공정관리는 BIM의 3D 모델 데이터와 공정계획 데이터를 연계하여 시공과정을 4D(x, y, z, t(시간)) 데이터로 구성하고 이를 공정관리의 효율성 제고를 위해 사용하는 과정을 말한다. BIM 공정관리는 기존의 공정관리 방식을 완전히 대체하는 것이 아니라 보완하는 데에 의미가 있으며 그 핵심요소는 4D 모델을 활용한 시공단계별 형상 모델 시각화이다. BIM 모델과 공정 데이터의 연계를 위해서는 다음과 같은 사항들을 규정해야 한다.
 ① LOD 수준
 ② 갱체분할 수준 (WBS 기준), 갱체명 작성 기준
 ③ BIM의 3D 모델 데이터와 공정 데이터와의 연계 방식
 (BIM 및 공정관리 소프트웨어 등의 종류 및 필요조건)
 ④ 전자문서 납품 형식

(2) BIM 공정관리를 위해서는 3차원 갱체모델의 작성 및 수정, 공정데이터의 작성, 갱체모델과 공정데이터의 연계 및 구현을 위한 S/W를 활용하여 작성한다. 그러므로 각각의 정보 작성을 위한 아래의 소프트웨어에 대한 정의가 필요하다.
 ① BIM 갱체모델 소프트웨어
 ② 공정관리 소프트웨어
 ③ 3차원 공정검토 소프트웨어

(3) BIM 공정관리에 표현되는 갱체모델의 상세도는 LOD 300이상을 시공단계에서의 기본 요구수준으로 정하며 공정(activity)별로 필요 상세수준에 따라 감독원과 협의하여 조정할 수 있다.

(4) 모델을 활용한 시공단계별 형상 시각화를 위하여 갱체분할기준이 필요하다. 그러나 고속도로공사는 과업구간이 도로연장 기준으로 범위가 길어 전체 현장의 공정을 한눈에 관리하기 어렵고, 현장 전체를 3D 갱체화할 경우 4D 구동프로그래머의 적정 용량을 초과하여 원활한 구동이 어려움으로 효율적인 BIM 공정관리를 위하여 다음과 같은 사항들을 규정해야 한다.
 ① BIM 공정관리 범위 기준
② BIM 공정관리 범위별 객체 분할기준

③ 공정데이터와 연계를 위한 객체명

(5) BIM 공정관리를 위해서는 3차원 모델 데이터와 공정 데이터와의 연계를 필요로 하는데 공정 프로그램(Primavera, Microsoft 등)에서 내보내는 공정 데이터를 가공없이 사용하기에는 부족함이 많다. 그래서 4D 시뮬레이션 프로그램에서 바로 불러와 사용할 수 있도록 표준 템플릿이 필요하다. 기존 공정 데이터는 3D 객체 모델의 구현을 위해 필요할 경우 추가 공정을 입력해야한다.

(6) 4D 시뮬레이션을 위해서는 3차원 모델 데이터와 공정 데이터의 연계가 필요하며 향후 공정 데이터가 변경이 되었을 경우, 자동 연결이 가능하도록 하기 위하여 다음과 같은 사항들을 규정하여야 한다.

① 3D 객체와 객체명 적합성 검토
② 공정 데이터 작성의 적합성 검토
③ 3D 객체와 공정 데이터의 연계

(7) BIM 공정관리를 위해 작성된 데이터는 발주처에서 시연, 검토 및 공정수정이 가능한 포맷으로 납품되어야 한다.

① 납품된 데이터포맷은 객체(Activity Model)와 공정정보가 연계된 하나의 파일로 구성되어 시각적인 공정계획을 확인할 수 있어야 한다.
② 단, 경계에 따라 호환성 확인 등의 문제해결을 위해 3D 모델과 공정 정보파일을 발주처와 협의하여 별도의 선정된 데이터 포맷을 제출하여야 한다.

(8) 전체 공사의 공정 확인을 위해 다수의 객체모델을 확인할 경우, 기준을 넘을 경우가 다수 발생하므로 아래의 규정에 의해 객체를 분할한다.

① 구간별 파일분할
② 시설물별 파일분할
③ 년차별 추진 시설물별 파일분할

대상 공사의 특성에 따라 발주처와 협의하여 위의 세 가지 기준을 통해 파일을 분할하여 작성, 관리 솔루션에서 원활히 확인할 수 있도록 한다.
해설

(1)에 대하여: 간트 차트(Gantt chart), CPM(Critical Path Method) 등을 기반으로 한 공정계획 데이터와 2D 도면만으로는 공정을 구성하는 각각의 activity의 대상을 확인하는 데에 많은 시간이 소요되며 전체적으로 시공 과정을 정확하게 파악하기가 어렵다. 3D 객체모델을 기반으로 한 BIM 공정관리는 activity별 공정데이터와 BIM 모델 객체들을 연동하여 시공 시점별 시공 계획 3D 모델을 확인할 수 있고 기 시공 데이터와의 비교를 통한 전적도 분석이 용이해진다.

BIM 모델링 시공단계별, activity별 사용 장비 모델을 입력함으로써 장비의 진입경로 및 작업공간에 대한 검토와 구조물과 장비 간의 간섭 검토가 가능하여 시공 가능성을에 대한 검토가 용이해진다. 장비 및 작업자의 가상 시뮬레이션을 통해 장비에 의한 안전성을 확보하고 필요 안전시설에 대한 검토가 가능하여 사고를 미연에 방지할 수 있다. 분야별 BIM 모델은 하나의 플랫폼에 통합 표현할 수 있으며, 이는 각 분야별 관리자들 다른 분야의 구조물 및 공정과의 연계에 대한 이해를 도와 협업의 효율성을 향상시킬 수 있는 도구로 활용 가능하다. 협력업체와 공급업체에 작업 범위와 시간을 명확하게 이해할 수 있도록 도와주고 현장 인력들에게 사업이 제대로 진행되고 있는지 쉽게 확인할 수 있도록 해준다.
유형별 4D 시뮬레이션 예시

(2)에 대하여: 3차원 객체모델의 저작 툴로 3차원 객체를 정의할 수 있어야 하며, 작성된 최소단위 객체는 레이어명 등으로 명칭부여가 가능하며, 정보공유를 위한 다른 형식으로의 format 변환이 가능하여야한다.

[국내 사용중인 3차원 객체모델 소프트웨어]

① Autodesk Revit

② Bentley Microstation

③ AllPlan

④ Catia

공정 소프트웨어는 시설물 시공단계별로 공정을 정의하고 해당공정의 시작
시간과 종료시간을 정의하며 인력, 장비, 자재수급을 고려하여 최적의 공정을 작성할 수 있어야 한다.

[국내 사용중인 공정 소프트웨어]

① Primavera P6 ② Microsoft Project

기존의 공정관리는 문서 위주로 해당공사의 공정표와 도면을 통해 현재의 공정상태 및 수치를 확인하며 별도의 프로그램 없이 문서를 통해 공사의 공정관리를 확인하였으나 3차원 객체모델을 통한 BIM 공정관리는 공사 공정을 3D 객체를 기반으로 표현함으로써 해당 3D 모델 및 공정을 표현할 수 있는 툴을 필요로 한다. 다양한 3D 구현 소프트웨어와 공정관리 프로그램이 존재하며 다양한 프로그램의 결과물을 표현할 수 있고 별도로 작성되는 3D 모델과 공정계획을 통합적으로 보여줄 수 있어야 한다. 현재 사용되고 있는 프로그램은 공정 확인뿐만 아니라 3D BIM 모델 검토가 가능한 프로그램으로 아래의 기능을 포함하고 있다.

① 3D모델 및 공정 Viewer
공정관리의 툴은 공정의 정보를 포함한 해당 객체를 3D로 표현하여 해당공정에 해당하는 시설물을 표현하고 기존 일시의 시설물 상태를 표현 가능해야 한다. 표현되는 3D 모델은 BIM 모델이 가지고 있는 속성정보 구현이 가능해야 하며, 공정정보 또한 표현되어야 한다.

② 공정 수정 및 검토
주변여건과 외부 상황에 의해 수시로 변화하는 공정의 직관적인 판단을 위해 구축된 BIM 공정관리 데이터를 수정할 수 있는 기능이 있어야
하며 수정된 데이터는 외부로 Export할 수 있는 기능을 가지고 있어 기존의 공정관리에 반영할 수 있도록 하여야한다. 해당공정의 주요 고려사항 및 수정사항에 대한 Mark-up 기능 등과 같은 알림 기능을 가져 작성된 공정계획에 대한 Feedback이 가능해야 한다.

③ 측정기능

각 시공시점의 가상 모델의 측정을 통해 시설물의 규격 및 여유 공간을 측정할 수 있고 대상 지점이 좌표를 추출 가능한 기본적인 측정기능을 가지고 있어야 한다. 측정한 데이터는 외부파일로 Export하여 활용할 수 있어야 한다.

[국내 사용중인 3차원 공정 소프트웨어]

① Autodesk Navisworks
② Bentley Navigator

(3)에 대하여: LOD 300은 시공단계 공정 표현이 가능한 수준이나 시설물의 특성, 주요구간의 경우 LOD 300 이상의 객체모델 필요한 경우 감독의 판단 하기에 상세수준을 높여 객체모델을 수정/추가 작성할 수 있다. 미국 AIA Document E202 BIM 가이드에서 제시한 상세수준의 정의는 아래와 같다.

<table>
<thead>
<tr>
<th>AIA BIM Protocol</th>
<th>LOD 100</th>
<th>LOD 200</th>
<th>LOD 300</th>
<th>LOD 400</th>
<th>LOD 500</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>공간을 개념적으로 모델링</td>
<td>일반 부재들을 이용한 모델링</td>
<td>특정 정보를 담고 있어 필요에 따라 수량, 경계 등 산출가능</td>
<td>시공을 위한 모델링, 상세설계와 배정될 수 있음</td>
<td>시공 후 모델링 (As built)</td>
</tr>
<tr>
<td>4D Scheduling</td>
<td>주요 부재의 전체적인 사업 구성</td>
<td>주요 Activity의 일정 계획</td>
<td>상세한 미성립의 일정 계획</td>
<td>시공을 위한 계획 및 상세 미성립 표준</td>
<td></td>
</tr>
</tbody>
</table>
(4)에 대하여: BIM기반의 공정관리를 위한 객체 분할 기준 설정시 BIM 공정관리 범위의 기준은 관리수준 I (일반)과 관리수준 II (특별)로 구분한다.

① 관리수준 I (일반): 사업 전체구간 또는 사업 구간 설정 범위 구간에 공정관리를 수행할 경우 적용
② 관리수준 II (특별): 사업 구간 중 특별한 (특수공법 시공구간, 공중간 간섭구간, 위험구간, 민원발생구간 등) 시설물구간에 상세 공정관리를 수행할 경우 적용

BIM 공정관리 범위별 객체 분할 기준은 다음과 같다.

① 관리수준 I (일반): BIM 객체 작성기준에서 정의한 내역서 WBS Level 7 항목을 기준으로 객체를 정의
② 관리수준 II (특별): BIM 객체 작성기준에서 정의한 객체 분할로 상세 공정관리 표현이 어려운 경우 시공계획 및 상세공정계획 (타설 계획, 설치구간 등)을 기준으로 객체를 분할

공정데이터와 연계를 위한 객체명은 다음과 같이 설정한다.

① 관리수준 I (일반): WBS7 작업명_재료/형식_위치/이름
② 관리수준 II (특별): WBS7 작업명_재료/형식_위치/이름_분할 객체명

<table>
<thead>
<tr>
<th>관리수준 I (일반)</th>
<th>관리수준 II (특별)</th>
</tr>
</thead>
<tbody>
<tr>
<td>고객방송, 탁상공단위황리, A1</td>
<td>고객방송, 탁상공단위황리, A1.5</td>
</tr>
<tr>
<td>고객, 공단위황리, A1</td>
<td>고객, 공단위황리, A1.5</td>
</tr>
<tr>
<td>기초, 공단위황리, A1</td>
<td>기초, 공단위황리, A1.5</td>
</tr>
<tr>
<td>바람, 공단위황리, A1</td>
<td>바람, 공단위황리, A1.5</td>
</tr>
<tr>
<td>통관기밀명, G08, A1</td>
<td>통관기밀명, G08, A1.12</td>
</tr>
</tbody>
</table>

BIM 공정관리 객체명에 대한 규칙을 적용하여 각 객체에 대한 직관적인 식별이 가능하도록 한다. 객체명 부여시 다음과의 규칙에 따라 작성하도록 하며 내용 구분서 언더라인 (“_”)으로 구분한다.

① 객체 이름의 시작을 WBS7 작업명으로 적용한다.
(예 : 기둥, 기초 등)

2) 다음으로 WBS7에 해당하는 작업명과 함께 재료/형식 정보를 적용한다.
 (예 : 기둥_철근콘크리트, 기초_무근콘크리트)

3) 설계도서에 기입된 위치 또는 이름을 입력한다.
 (예 : 기둥_철근콘크리트_P1)

4) 객체 분할을 위한 명칭(단계별 타설 명칭, 측정 등 공종을 구분할 수 있는 명칭)을 입력한다. → 관리수준 II(특별) 한하여 적용
 (예 : 기둥_철근콘크리트_P1_Lot1)

[BIM 공정관리 객체명]

<table>
<thead>
<tr>
<th>객체명</th>
<th>WBS level7</th>
<th>재료/형식</th>
<th>위치/이름</th>
<th>분할 객체명</th>
</tr>
</thead>
<tbody>
<tr>
<td>설계</td>
<td>WBS level7 항목명</td>
<td>객체를 구성하는 재료명</td>
<td>타설 및 명칭</td>
<td>공정 분할을 위한 명칭</td>
</tr>
<tr>
<td>관리수준 I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>관리수준 II</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

공정에 의해 작성된 세부분류명은 공정연계를 위해 파일 내에서 고유의 값을 가지게 작성하며 작성된 객체명은 공정데이터의 연계를 위한 코드로 사용한다.

(5)에 대하여:

공정 데이터 표준 템플릿 구성요소는 다음과 같이 설정할 수 있다.

<table>
<thead>
<tr>
<th>작업 이름</th>
<th>표시 ID</th>
<th>작업 유형</th>
<th>동기화 ID</th>
<th>계획공정 시작날짜</th>
<th>계획공정 종료날짜</th>
<th>실제공정 시작날짜</th>
<th>실제공정 종료날짜</th>
<th>확장</th>
<th>비고</th>
</tr>
</thead>
</table>
공정관리 프로그램의 원본 데이터를 이용하여 4D 시뮬레이션 프로그램에서 공정입력이 가능한 경우도 있으나 통일된 데이터 관리를 위하여 원본 공정 데이터 이외에도 표준 템플릿을 추가로 작성한다.

- 실제공정의 경우 기 수행되었을 때에는 입력하고 그렇지 않은 경우 공란으로 둔다.
- 작업유형 기존공정에서 공종명으로 타설, 제거, 터파기 등 해당객체의 생성 및 제거의 작성형태를 정의하여야하나 프로그램 상에서 인식할 수 없으므로 별로의 항목으로 작업형태를 정의하여야 한다.
- 작업의 형태는 기본적으로 신규, 임시, 영구, 제거의 형태가 있으나 사용자 지정에 의해 색 및 투명도의 변화 등으로 표현하고, 항목을 추가하여 작성할 수 있다. 표현 형태에 관련해서는 감독원과 협의하여 설정하도록 한다.
- 동기화ID는 분류된 3차원 객체와 공정정보를 연계를 위한 코드로 분할된 객체의 고유코드를 이용하여 공정정보를 연계시키는 ID로 해당공정에 대항하는 객체명을 기입한다.
작성된 공정데이터는 객체중심이 아닌 일반적인 공정관리 데이터이므로 3D 객체연동 및 공정표현 정도에 따라 아래의 항목에 대한 추가적인 공정 데이터를 필요로 한다.

- 세부 객체 분할에 의한 세부 공정데이터 필요시
 (Ex. 교각 1단, 교각 2단...)

- 공정으로 존재하지 않으나 3D 형상 표현을 위해 필요한 객체
 (Ex. 지형, 기존시설물 등)
(6)에 대하여: 3D 객체와 객체명 간의 적합성 검토는 3D 객체와 공정 데이터의 연계를 위하여 사전에 검토사항 중 3D 객체와 객체명이 상호간 적합하게 연계되었는지를 검토하는 것이다.

- 각 객체명은 단위공정에 작업이 행해지는 단위로, 같은 명칭으로 정의된 객체들은 해당공정 데이터에 의해 일괄 작업(ON, OFF, 속성변화)이 이루어지므로 공정 구분에 맞게 객체명이 정의되어 있는지 확인한다.
- 지형과 같이 공정에 없는 객체도 그 객체명을 확인한다. 해당 객체들은 공정에 해당하지 않지만 정의가 없을 경우, 4D 시뮬레이션에서 그 형상은 표현되지 않으므로 추가로 해당 공정데이터의 연동을 위하여 객체명이 정의되어 있는지 확인한다.
- 공정데이터와 객체의 원활한 연계 확인을 위해 객체명을 외부 파일로 추출하여 공정데이터와의 정합성을 확인한다.

공정 데이터 작성의 적합성 검토는 3D 객체와 공정 데이터 연계를 위하여 사전에 검토사항 중 시공단계의 공정표 데이터(Activity Name, Start, Finish)가 공정 표준 템플릿에 정확히 기입되었는지 검토가 필요하다.

- 앞서 작성된 공정데이터(표준템플릿)의 데이터의 형식을 확인한다.
- BIM 공정프로그램에서 해당데이터가 인식할 수 있는 형식인지 확인한다.
- 3차원 객체에서 추출된 객체명과 연동아이디와의 일치여부를 확인한다.
- 작성형태에 따른 단위공정 작업형태를 확인한다.

3D 객체와 공정데이터의 연계는 사전에 검토된 3D 객체와 공정데이터를 4D 시뮬레이션 프로그램을 이용하여 공정연계 순서를 예시로 제시하면 다음과 같다.
① 4D 시뮬레이션 프로그램 실행 및 3D 객체 열기

② 객체의 표현여부를 확인(형상 및 객체명)
 - 작성된 객체의 레벨명과 그에 해당하는 객체를 확인
③ 4D 시뮬레이션 작업구성에 대한 정의
- 공정에 따른 3차원 객체 모델의 표현방법 정의
- 사용자에 의해 추가로 지정하여 보다 효율적으로 공정 표현

<table>
<thead>
<tr>
<th>작업모양</th>
<th>시작모양</th>
<th>끝모양</th>
<th>시뮬레이션시작모양</th>
<th>이르모양</th>
<th>늦은모양</th>
</tr>
</thead>
<tbody>
<tr>
<td>공사기간동안 표현될 객체의 표현</td>
<td>공사기간 완료후 표현될 객체의 표현</td>
<td>해당공정 시작전 객체의 표현 가능</td>
<td>계획공정대비 이르게 시작된공정의 표현</td>
<td>계획공정대비 늦게 완공된공정의 표현</td>
<td></td>
</tr>
</tbody>
</table>

④ 공정연계 툴(TimeLiner)을 이용한 공정데이터 오픈 연계
작성된 공정템플릿을 오픈하여 프로그램 상에 입력한다.

공정데이터 오픈
템플릿과 공정의 연계

⑤ 공정 및 바차트 생성
공정 및 바차트 생성
⑥ 객체와 공정의 연계
- 입력, 구성된 공정데이터를 일정한 규칙에 의해 자동으로 객체와 연계

⑦ 객체와 공정의 연계확인
- 해당공정에 맞는 객체의 연결여부 확인

⑧ 시뮬레이션을 연계 확인
- 4D 시뮬레이션을 통한 공정 확인 및 3D 객체 모델을 통한 검토 수행
한국도로공사

(7)에 대하여: 통합모델의 형식은 구현 프로그램을 통해 3D 형상과 공정이 연계된 형태로 시간의 호름에 따른 형상 표현이 가능한 파일형식으로 작성한다. 다만 발주처의 독자적인 공정관리솔루션이나 웹기반의 공정시각화 도구가 없는 경우에는 국내에서 사용중인 Autodesk사의 Navisworks과 Bentley 사의 Navigator와 같이 성과물 납품과 함께 제공된 템어와 데이터포맷을 이용할 수 있다.

다양한 3D 모델의 작성 프로그램에 의해 작성되는 3차원 형상(Activity Model)은 과업지시서에서 명시한 형식으로 제출하나, 관리프로그램에서 그 형상정보를 받아들일 때 100% 표현될 수 있어야 한다. 사업이 시작되어 수행이 완료된 후 다른 사용자가 데이터를 다른 기종 프로그램으로 이용하고자 할 때 완성된 통합(형상과 속성 연계된)파일이 열리지 않는 등의 호환성에 문제가 발생하게 된다. 따라서 이를 방지하고자 발주처와 협의하여 Activity Model과 공정모델 포맷을 따로 관리할 필요가 있다.

<table>
<thead>
<tr>
<th>구분</th>
<th>형상포맷</th>
<th>공정정보 포맷</th>
</tr>
</thead>
<tbody>
<tr>
<td>Navisworks</td>
<td>nwd, nwc, nwf</td>
<td>• Primavera, MS-Project, Excel 포맷</td>
</tr>
<tr>
<td>Navigator</td>
<td>dgn</td>
<td></td>
</tr>
</tbody>
</table>

(8)에 대하여: 도로의 시설은 규모가 크고 연장이 긴 것이 특징이다. 따라서 전체 노선에 따른 3차원 공정모델 데이터의 용량이 많아지고 때에 따라서는 전체노선의 공정뿐만 아니라 복잡공정, Critical Path공정, 시설물별 공정 등의 구간별, 부위별, 년차별 추진 계획별로 작성되어야 할 때가 있다. 그러므로 대상 공사의 특성 및 규모에 따라 발주처와 협의하여 파일분할을 결정한다.
6.3 BIM 안전관리

안전관리에 있어서 BIM 활용이 가장 큰 효용성은 시각화 효과이다. 안전과 관련된 모든 개체들을 모델링하여 시각화함으로써 불안전 인자들과 발생 가능한 안전사고들을 보다 쉽게 예측할 수 있도록 돕고 공극적으로 안전관리 계획 수립에 유용한 수단으로 활용될 수 있다.

(1) BIM 모델은 현장 부지활용 및 시공계획의 기초자료로 사용 가능하며, 이는 현장에서의 위험요소 파악과 안전관리 계획으로 연장 적용 가능하다.
(2) 3D 보행시선 뷰(walk-through view) 또는 4D 시뮬레이션, 애니메이션 등을 사용하여 현장 안전관리 계획 및 장비 운용 계획 내용을 주도급 업체 및 건설인부들에게 효과적으로 설명/전달할 수 있다.

(1)에 대하여: BIM 기반의 현장 계획 및 안전관리 계획을 위해 다음과 같은 과정을 필요로 한다.

1. 4D BIM 모델링
 가. 현장 지형 및 부지
 나. 차량 및 건설 중장비용 현장 임시도로
 다. 차량 및 건설 중장비 (모델별 장비의 고유 특성값 입력)
 라. 건설인부용 현장 이동 경로
 마. 현장 임시 사무실 건물 및 부대시설
 바. 자재 보관 및 적재 부지

2. 주요 시공 단계별 차량 및 중장비의 이동 경로 계획

3. 장비 이동에 관한 시뮬레이션을 통해 잠재적 위험요소 및 간섭(장비 간 또는 장비와 기지공 구조물간) 검토

4. 크레인, 굴착기 등의 장비 운용 시, 팔 길이에 따른 회전반경 간섭 및 안전성 검토

5. 현장안전 및 작업 효율성을 고려한 자재 보관 및 적재 부지의 최적 위치 검토
지형, 부지, 건설장비 등의 모델링

건설 장비 운용 안전성 점토

자재 적재 부지 점토

(2)에 대하여: BIM은 안전관리 계획, 현장의 잠재적 위험요소 등의 내용을 시각화하여 현장 작업자들이 안전관련 사항들을 쉽게 이해할 수 있도록 하고, 현장 관리자와 원활한 의사소통을 도울 수 있다.
6.4 안전관리 활용

건설 산업 안전관리 규칙이나 공종별 안전사고 리스크 수준에 관한 정보들을 4D BIM 모델에 연계하여 BIM을 다음과 같은 안전관리 시스템으로 확장하여 사용할 수 있다.

1. 자동검토 가능한 건설 산업 안전관리 규칙들을 선정하고 자동검토 add-on 기능을 추가하여 효율적 안전관리 도구로 활용 가능하다.
2. 각 시공 작업의 세부단계별 안전사고 리스크 수준을 평가하고 이를 4D BIM 모델에 연계하여 시각화함으로써 현장 관리자가 현재 진행 중인 작업들의 리스크 수준을 즉각적으로 파악할 수 있도록 도울 수 있다.
3. 공종별 안전관리 요소들을 4D BIM에 반영하고 이를 가상현실로 구현하여 현장작업자의 안전교육으로 활용할 수 있다. 가상공간을 통한 간접경험이지만 시각화 효과로 인해 구두 및 문서를 통한 교육보다 향상된 안전수칙 인식을 기대할 수 있다.

산업안전 관련 규칙의 자동 검토 프레임워크

(1)에 대하여: 위 그림은 산업안전 관련 규칙들의 자동검토 기능을 구현하기 위한 프레임워크를 나타내고 있으며 크게 5단계로 나누어 볼 수 있다.
1) Rule Interpretation
가. 자동검토 가능 항목들의 선별
나. 현장 조건, 대상 개체, 규칙의 대상이 되는 변수 등에 따른 항목 분류
다. 자동 검토 프로그래밍
2) BIM Model Preparation
가. 4D 모델 생성
나. 검토 대상인 변수를 대상 개체 모델의 매개변수화
3) Rule Execution: (1)과 (2)의 결과물에 대한 비교 검토 (자동화 알고리즘)
4) Rule Checking Report
가. 규칙에서 벗어나는 부분에 대한 결과 리포트 작성
나. 결과 내용을 BIM에 가시화
5) Corrective Actions: (4)의 결과에 대한 현장 관리자의 의사결정 및 시행

다음은 낙하사고 방지에 관한 안전 규칙을 BIM에 적용한 예이다. 굴착 높이와 굴착면 경사도를 매개변수로 하여 위치별로 안전수준을 평가・표시하고, 이 결과를 바탕으로 낙하사고 방지 대책을 계획하여 BIM 모델에 다시 적용하였다.

굴착면 높이와 경사면에 따른 위험 수준 가시화
(2)에 대하여: 다음은 비계, 동바리 등의 가시설공과 관련하여 작업 단계별 안전사고 발생확률 및 심각도를 기준으로 리스크 수준을 평가하고 그 결과를 4D BIM 모델에 가시화한 예이다.

<table>
<thead>
<tr>
<th>Step</th>
<th>Setting up the scaffolding</th>
<th>Succeed Result</th>
<th>Likelihood</th>
<th>Severity</th>
<th>Risk Factor</th>
<th>Risk Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prepare the scaffolding area</td>
<td>0.125</td>
<td>1.25</td>
<td>1.5625</td>
<td>Low</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Set out the jacks</td>
<td>0.125</td>
<td>1.25</td>
<td>1.5625</td>
<td>Low</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roll all braces and connectors prior to proceeding to the next tier of jacks</td>
<td>0.225</td>
<td>3</td>
<td>4.5</td>
<td>Moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pour scaffold brackets to stack each level of scaffold before installing the next level</td>
<td>0.2</td>
<td>1.75</td>
<td>3.5</td>
<td>Moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Install ladder or stationary access to working platform above</td>
<td>0.2</td>
<td>1.75</td>
<td>3.5</td>
<td>Moderate</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step</th>
<th>Installing the masonry wall</th>
<th>Succeed Result</th>
<th>Likelihood</th>
<th>Severity</th>
<th>Risk Factor</th>
<th>Risk Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stack the materials on the scaffold deck</td>
<td>0.25</td>
<td>2.75</td>
<td>6.17</td>
<td>Moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prepare for surfa. waterproofing, fixing, vamps, vertical exposure vamps, walks, etc.</td>
<td>0.2</td>
<td>1.75</td>
<td>3.5</td>
<td>Moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Measure and layout the wall</td>
<td>0.125</td>
<td>1.75</td>
<td>2.1875</td>
<td>Low</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lay the masonry while bonding it together with source and making sure it is level</td>
<td>0.25</td>
<td>2.5</td>
<td>0.25</td>
<td>Moderate</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Step</th>
<th>Dismantling the scaffolding</th>
<th>Succeed Result</th>
<th>Likelihood</th>
<th>Severity</th>
<th>Risk Factor</th>
<th>Risk Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access the top platform</td>
<td>0.2</td>
<td>2.75</td>
<td>5.5</td>
<td>Moderate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dismantle from end bay</td>
<td>0.267</td>
<td>3</td>
<td>8.01</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dismantle planks</td>
<td>0.275</td>
<td>2.75</td>
<td>7.5625</td>
<td>High</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dismantle brackets, members, ledges, and etc.</td>
<td>0.275</td>
<td>3</td>
<td>8.25</td>
<td>High</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

낙하사고 방지 방안이 적용된 BIM 모델
(3)에 대하여: 가상현실 안전관리 시스템
다음은 한국산업안전보건공단(KOSHA 18001) 기준의 공종별 안전관리 요소를 4D BIM에 반영하고 3D 가상 아바타 모델을 도입하여 안전 교육에 활용한 예이다.
1) 아바타를 이용하여 현장을 확인함으로써 위험요소의 확인 및 발견 가능
2) KOSHA 등 안전관리 지침의 주요내용을 가상의 현장에 실제 구축하고 아바타를 이용하여 가상체험을 함으로써 보다 직접적인 교육효과

| 가시실 작업 현장에서 비계에 관한 안전관리 지침 표시 |
| 이동식크레인 작업 현장에서 장비와 작업자의 안전관리 지침 표시 |
| 라이닝 견우점 해체 작업 현장에서 작업자의 안전관리 지침 표시 |
6.5 위치기반 안전관리

GPS, 컴퓨터비전 기술, RFID 등의 위치추적 기술을 활용하여 건설 자재, 인부, 장비들의 위치를 실시간 추적하고 BIM 모델 상의 안전관리 계획과 비교·검토하여 지정된 경로 및 작업위치를 벗어날 경우 적절한 안전조치를 취하는 안전 시스템을 구현할 수 있다.

현장 작업을 실시간 모니터링하기 위한 수단으로 다양한 위치추적 기술들이 활용되고 있고, 그 중 GPS는 중장비의 위치 추적은 물론이고 작업보조를 위한 용도로도 활용되고 있다. 주요 자재들은 RFID 기술로 그 위치를 상시적으로 모니터링하기도 하며, CCTV의 영상에 개체인식 알고리즘을 더하여 장비 또는 인부들의 위치를 탐지할 수 있는 기술 또한 시도되고 있다. 이러한 기술이 현장에 활용될 경우, BIM과의 연계를 통하여 위치데이터 기반의 안전사항들을 검토해 볼 수 있다. 다음 그림은 RFID와 BIM을 활용한 현장 인력관리 시스템의 구성도이며, 이와 유사한 방식의 시스템으로 위치기반 안전관리 시스템 구축이 가능하다.

![RFID-Based Personnel Management: System Components and Architecture](image-url)
6.6 UAV 활용 안전관리

(1) 다음의 과정들을 통해 UAV(Unmanned Aerial Vehicle)와 BIM을 연계함으로써 현장 관리자의 안전관리 작업을 원활하게 할 수 있다.
 가. UAV는 현장 곳곳의 상황을 활용하여 실시간 스트리밍 영상을 현장 관리자에게 제공
 나. UAV의 자율비행 경로 및 현재 위치를 BIM에 가시화
 다. UAV의 위치 및 영상 내 장면과 관련된 안전관리 정보를 BIM에 가시화
(2) 기시공 구조물의 점검을 위하여 UAV와 BIM을 활용함으로써, 감독자가 직접 접근하기에 위험한 곳의 점검을 대신할 수 있다.

다음 그림은 (a) BIM을 기준으로 UAV의 자율비행 경로를 지정하고, (b, c) UAV의 영상을 입력받은 관리자의 전달사항을 UAV가 현장작업자에게 전달하는 과정을 나타내고 있다.
6.7 BIM기반 지하물 검토

상하수도관, 각종 케이블 등의 지하 매립시설물에 대한 Geo-reference BIM 모델이 있을 경우, 지반굴착 작업 시 해당 지역 지하의 매립시설물 파손으로 인한 안전사고 발생을 방지할 수 있다. 이를 위해서는 다음과 같은 작업을 필요로 할 수 있다.

(1) 지하투시 레이더 (GPR, Ground-Penetrating Radar) 측량
(2) GPR 데이터를 기반으로 한 지하 매립시설물 3D 모델링
(3) GIS (Geographical Information System)과의 연계
(4) 사진 및 영상 데이터와의 중첩을 통한 증강현실 기술 구현

(1)에 대하여: GPR (Ground-Penetrating Radar, 지하투시 레이더)는 전자기파를 이용하여 지하의 층구조를 파악하는 측량 방법이며 측량 결과로부터 매립시설물의 위치를 파악할 수 있다.
(2)에 대하여: 현장에서의 굴착 위치와 생성된 지하매립 시설의 3D 모델간의 매핑을 위해서는 생성되는 3D 모델은 위도, 경도와 같은 Global 좌표 정보가 포함된 Geo-referenced 모델이어야 한다.
(3)에 대하여: GIS와의 연계는 굴착 작업이 이루어지는 지역의 정보를 신속하게 찾아볼 수 있는 수단을 제공할 수 있다.
(4)에 대하여: 사진 및 영상 데이터와 지하시설물의 BIM 모델을 중첩시켜 표현할 수 있는 증강현실 기술을 개발·구현하면 지하시설물의 위치를 현장에서 보다 쉽게 파악할 수 있다. 다음 그림은 파노라마 사진과 지하시설물 데이터(GPR 또는 BIM)를 중첩시켜 표시한 증강현실의 결과이다.
7. 유지관리 단계의 BIM 적용

7.1 준공 BIM 모델

(1) 준공도서 납품시에 시공된 현황을 모두 반영한 준공 BIM 모델을 확보할 수 있도록 과업지시서에 포함할 수 있다. 준공 BIM 모델은 설계단계와 시공단계를 거치면서 수정된 모델을 유지관리에 활용하기에 적절한 수준으로 변경한 모델이어야 하고 유지관리를 위한 분류체계, 모델 상세수준 및 관련 정보를 포함해야 한다.

(2) 유지관리 업무에서 BIM 원본 모델을 이용하는 데는 여러 가지 제약사항이 따르기 때문에 이는 별도 보관하고 이를 통해 생성되는 전자문서 형태 혹은 응용 모델로 볼 수 있는 변환된 모델을 이용하는 것이 필요하다.

(3) BIM 기반의 유지관리 시스템을 위해서는 모델에 관련 설계 및 시공 문서가 연결되어 3차원 시각화 기반의 정보체계가 구현되어야 한다. 이를 위해서는 모델 분류체계와 관련 정보체계를 연계하는 시스템이 필요하다.

[해설]
(1)에 대하여: 현재 도로공사가 운영하고 있는 유지관리를 위한 시스템은 BIM 기반으로 전환되기 전까지는 데이터베이스 수준에서 연계되고 지역 및 지사에서 유지관리를 수행하기 위해 납품된 BIM 모델을 활용할 수 있도록 체계를 갖추는 것이 한시적으로 필요하다. 신규 사업과 주요 시설물 위주로 우선적으로 과업지시서에 유지관리를 위해 필요한 모델링 요구사항 및 정보체계를 포함해야 한다. 설계 및 시공 단계에서 BIM이 활용된 경우에는 이를 최대한 활용하도록 하고 준공 납품시에 유지관리 체계에 적합하도록 수정하는 절차를 거쳐야 한다. 기존 유지관리 시스템 데이터베이스로 정보를 입력하는 것은 스프레드시트 등의 정보 연계 템플릿을 제공하여 자동으로 입력될 수 있게 하는 것이 바람직하다.
(2)에 대하여: 유지관리 업무를 수행하는 주체나 도로공사의 현재 시스템이 BIM 모델에 연계된 형태의 정보 체계를 갖추고 있지 못하기 때문에 향후 이러한 체계가 갖추어질 때까지는 납품된 BIM 모델을 변환하여 3차원 PDF 형태나 용량이 적은 이미지 형태의 모델에 관련 정보나 문서를 연결하는 형태로 활용하는 것이 현실적이다. 신규 사업과 중요 시설물 위주로 순차적으로 확대해나가는 전략이 요구된다.

(3)에 대하여: 현재의 설계 성과품은 유지관리 단계에서 각 점검 단위별로 설계 및 시공과정의 정보를 활용하는데 제약이 있는 상태로 파악된다. 따라서 시설물 점검 및 평가 단위를 고려하여 관련 정보에 대한 데이터베이스 및 문서/도면 연계 체계를 구축할 필요가 있다. 특히, 향후 운영단계에서 파악이 필요한 설비나 특수 공법으로 구축된 시설물 등에 대한 정보는 상세 수준이 높은 디지털 모델 및 문서 연계 방식으로 납품을 받도록 유도해야 한다.
7.2 유지관리 BIM 활용

(1) 유지관리 단계의 BIM 모델 활용의 주요 목적은 현황관리, 이력관리, 점검 및 상태 평가이다. 기존의 유지관리 업무 절차에서 이를 위한 모델 구축을 순차적으로 반영하여 유지관리 시스템이 BIM 기반으로 전환되도록 한다.

(2) 고속도로 및 관련 시설물의 점검 절차에 현황 파악 및 현재 데이터베이스의 신뢰성 검토를 포함하여 현황의 신뢰도를 균질하게 확보하도록 하고 필요한 경우에 정확한 형상을 파악하고 변형 정도를 평가하기 위해 레이저스캐닝 등의 광학적인 도구를 활용하여 모델을 구축할 수 있다.

[해설]
(1)에 대하여: 현재 한국도로공사가 운영 중인 설계, 시공, 문서관리, 유지관리 등을 위한 기존 시스템 내의 방대한 데이터베이스와의 연계는 순차적으로 수행되어야 한다. 다만 체계를 구축하기 위해서는 최종적인 시스템의 데이터베이스 연계 규칙은 사전에 정해져야 한다. 모델 기반의 고속도로 시스템의 디지털화는 장기적인 과제로 추진되어야하기 때문에 기존의 수행중인 점검 업무 등에서 획득되는 현황을 지속적으로 반영하는 절차를 마련해야 한다. 이를 통해 현재 운영 중인 HBMS, HPMS 등을 개선할 수 있다.

(2)에 대하여: 현재 한국도로공사가 보유하고 있는 고속도로 관련 설계, 시공, 유지관리 관련 정보는 방대하고 시기별로 현황과의 일치여부에 대한 신뢰성이 다른 것으로 판단된다. 또한 시설물의 보수, 보강, 변형 등으로 인해
서 정확한 상태 평가를 위한 도면의 유효성이 부족한 상황이 다수 있을 것으로 예상된다. 따라서 최근에 효과적인 기존 현황 시설물의 디지털화를 위한 도구로 활용되고 있는 레이저스캐닝 등의 광학장비를 통한 모델 구축을 지속적으로 추진할 필요가 있다.
8. 참고문헌

강인석, “건설관리분야 4D시스템의 기능분석을 통한 활용성 개선방안”, 대한건설학회 논문집, 제 18권 10호, 2002. 10

강인석 외, 공통정보운영방식에 의한 4D CAD시스템의 정보관리 개선방안 연구, 대한토목학회 논문집, 24권 5-D, 2004. 9

강인석 외, 토목시설 지형정보의 4D시스템 구현을 위한 객채속성별 삼각망 구축기술, 한국건설관리학회 논문집, 2005. 2

김덕원, 심창수, 이광명, 한석희, 김용한, “호남고속철도 시설물의 3차원 정보 모델의 연동성”, 한국철도학회 학술발표회 논문집, 2009. 05. 21,

심창수, 김덕원, 이광명, “3차원 교량정보모델에 기반한 콘크리트 교량의 건 집 시스템(Estimating System for Concrete Bridge using 3D Bridge Information Models)”, 한국콘크리트학회 학술발표회 논문집, 2009. 05. 07, pp.43-44.

AGC of America, “The Contractors’ Guide to BIM”, Ed. 1

Duxbury, James and Nader, Marwan, “Use of Integrated Shop Drawings for the San Francisco Oakland Bay Bridge“, Proc. of IABSE Conference on Information and Communication Technology for Bridges, Buildings and
Construction Practice, 2008.06.04, Keynote.
Jos P. van Leeuwen, Aant van der Zee, “Distributed object models for collaboration in the construction industry“, Automation in Construction, 14,

NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY, General

Sampaio, A.Z., Recuero, A. “A geometric modelling of box girder deck for integrated bridge design“, International Journal of Computer Applications

Wallsgrove, J., and R. Barlow, “Virtual Reality Images to Aid Public Involvement in Appearance of Roads and Bridges,” Paper No. 01–2754,
부록 I BIM 실행계획서 양식

1. 목적
BIM 실행계획서는 설계자 혹은 시공사가 BIM 모델을 활용한 업무를 수행할 때 각 단계별로 담당자와 역할을 설정하고 BIM 성과물과 그 절차를 계획하여 발주자에게 제공하는 문서이다. 실행계획서는 다음 사항들을 포함해야 한다. 실행계획서는 사업 시작 시점에 정의되고 구성원이나 활용 목적의 변경이 있을 때는 업데이트 될 수 있는데 이는 발주자의 허가를 필요로 한다.
- 사업 정보
- 사업 참여자
- 사업 목표
- 사업의 각 단계별 BIM 활용
- BIM 활용에 따른 BIM 성과물 정의
- 각 BIM 성과물의 작성자와 사용자 정의
- 각 BIM 성과물에 대한 모델 요소, 상세정도와 속성
- BIM 생성, 유지관리, 제출 및 협업 절차
- 기술 환경
2. BIM 실행계획서 예시 (예시)

[1] BIM 사업 실행계획서 개요

사업의 목적을 달성하기 위해 BIM 기술과 절차를 어떻게 활용하는지에 대한 개요 설명

[2] 사업 정보

<table>
<thead>
<tr>
<th>역할</th>
<th>소속</th>
<th>성명</th>
<th>연락주소</th>
<th>E-mail</th>
<th>연락처</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIM 관리자</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>영역별 BIM 책임자</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIM 모델러</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* 사업의 성격에 따라 BIM 관련 주요 담당자 지정 (BIM 관리자는 관련경력을 보유하고 있는 설계사 혹은 시공사의 기술자어야 하고 영역별 BIM 책임자는 구조, 지반, 수리 등 각 전문영역별 기술 경력을 BIM 관련 경력을 동시에 보유한 기술자를 의미함)

[3] 사업 참여자

[4] 사업의 목표

BIM이 사업의 각 단계별로 어떤 특정한 목표를 달성하기 위해 사용되는지 기술

<table>
<thead>
<tr>
<th>중요도(상/중/하)</th>
<th>목표 설명</th>
<th>BIM 활용목적</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
BIM 활용 : 아래 표에서 선택 가능

<table>
<thead>
<tr>
<th>활용방안</th>
<th>활용 가치</th>
<th>필요한 자원</th>
</tr>
</thead>
<tbody>
<tr>
<td>예방적 유지 관리</td>
<td>• 인벤토리/이력 관리, 점검 등 유지관리 생산성 중대, 종합적 평가 능력</td>
<td>• 설계검토 소프트웨어
• 유지관리 시스템 수정
• 3차원 모델 활용 시각화 시스템
• 3차원 모델 활용 능력 교육</td>
</tr>
<tr>
<td>자산 관리</td>
<td>• 사용자 매뉴얼, 장비 및 제품 성적서 관리, 시설물 상태 평가, 자산의 운영/상태/보수요구 등 이력관리, 정확한 자산 인벤토리 관리, 모델 업데이트</td>
<td>• 3차원 모델 및 이에 연계된 자산관리시스템
• 3차원 모델 활용 교육</td>
</tr>
<tr>
<td>공간관리</td>
<td>• 사업 현장의 필요 부지의 할당 및 관리
• 공간 활용 계획 지원
• 4D 활용으로 공간 중복 해소 및 시공성 검토 개선
• 안전관리 개선</td>
<td>• 3차원 모델
• 관리 소프트웨어</td>
</tr>
<tr>
<td>재난 관리</td>
<td>• 실시간으로 관리 자산에 대한 관찰, 소방, 안전관리부서에 3차원 정보 제공
• 비상상황 대처 능력 개선
• 관련 기관에 정보 서비스 제공</td>
<td>• 3차원 가상모델
• 재난 상황 대처 매뉴얼 및 연계 시스템
• 3차원 시각화 및 연계시스템</td>
</tr>
<tr>
<td>이력 모델링</td>
<td>• 확장, 보수/보강 등 변경사항 반영
• 변경에 따른 승인 절차 개선
신속한 절차를 통해 리스크, 비용, 법적 제한에 대한 분쟁 사전 해결</td>
<td>• 3차원 모델
• 모델 업데이트를 위한 교육</td>
</tr>
<tr>
<td>가상 독업</td>
<td>• 복잡한 구조물 및 시설물의 시공성 개선
• 시공 생산성 개선
• 시공중 안전 관리 향상</td>
<td>• 3차원 모델링
• 간섭검토 소프트웨어
• 3차원 모델기반 설계검토 및 시공성 검토 능력 교육</td>
</tr>
<tr>
<td>디지털 제작</td>
<td>• 부재의 디지털 기술 기반 제작
• 정밀 제작 및 시공오차 축소</td>
<td>• 3차원 모델링
• 제작 장비 및 방법</td>
</tr>
<tr>
<td>시공 생산성 증대</td>
<td>GIS 기반의 BIM 솔루션을 통한 최적 입지 선정 검토</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3차원 시공 모델을 통한 크레인 배재 운영 및 오류 사전 제거</td>
<td></td>
</tr>
<tr>
<td></td>
<td>사무실과 현장 실무자와의 의사소통개선</td>
<td></td>
</tr>
<tr>
<td></td>
<td>언어 장벽 해소 (해외근로자)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3차원 공사관리 및 계획</th>
<th>모델 기반 간섭 및 공중간 조정</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>현장에서의 공중간 상호간섭 사전제거</td>
</tr>
<tr>
<td></td>
<td>생산성 확대</td>
</tr>
<tr>
<td></td>
<td>설계 변경 최소화</td>
</tr>
<tr>
<td></td>
<td>공기단축</td>
</tr>
<tr>
<td></td>
<td>준공도서 및 모델 정확성 개선</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3차원 간섭 조정</th>
<th>모델 기반 간섭 및 공중간 조정</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>현장에서의 공중간 상호간섭 사전제거</td>
</tr>
<tr>
<td></td>
<td>생산성 확대</td>
</tr>
<tr>
<td></td>
<td>설계 변경 최소화</td>
</tr>
<tr>
<td></td>
<td>공기단축</td>
</tr>
<tr>
<td></td>
<td>준공도서 및 모델 정확성 개선</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3차원 모델링</th>
<th>설계단계에서의 투명성 제고</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>설계, 비용, 공기에 대한 품질관리 개선</td>
</tr>
<tr>
<td></td>
<td>설계 결과의 시각화 개선</td>
</tr>
<tr>
<td></td>
<td>사업 참여자간의 의사소통 개선</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>공학적 해석</th>
<th>구조해석, 에너지 해석 등 연계 검토 시간 및 정확성 개선</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>설계회사의 전문성 및 서비스 개선</td>
</tr>
<tr>
<td></td>
<td>설계 변경에 따른 생산성 개선</td>
</tr>
<tr>
<td></td>
<td>최적의 설계안 도출 가능성 개선</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>친환경성 평가</th>
<th>설계 검토 및 친환경 검토 절차 시간 단축</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>의사소통 개선으로 환경문제 해결을 위한 재설계 노력 감소</td>
</tr>
<tr>
<td></td>
<td>재료 사용 효율화 및 사업비 효율 개선</td>
</tr>
<tr>
<td></td>
<td>에너지 및 공간계획을 통한 시설물 성능 최적화</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3차원 모델링</th>
<th>환경 정보</th>
</tr>
</thead>
<tbody>
<tr>
<td>모델 검토 소프트웨어</td>
<td></td>
</tr>
<tr>
<td>협업 도구 및 활용 교육</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3차원 모델링</th>
<th>환경 정보</th>
</tr>
</thead>
<tbody>
<tr>
<td>모델 검토 소프트웨어</td>
<td></td>
</tr>
<tr>
<td>협업 도구 및 활용 교육</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>공학적 해석</th>
<th>구조해석, 에너지 해석 등 연계 검토 시간 및 정확성 개선</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>설계회사의 전문성 및 서비스 개선</td>
</tr>
<tr>
<td></td>
<td>설계 변경에 따른 생산성 개선</td>
</tr>
<tr>
<td></td>
<td>최적의 설계안 도출 가능성 개선</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>친환경성 평가</th>
<th>설계 검토 및 친환경 검토 절차 시간 단축</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>의사소통 개선으로 환경문제 해결을 위한 재설계 노력 감소</td>
</tr>
<tr>
<td></td>
<td>재료 사용 효율화 및 사업비 효율 개선</td>
</tr>
<tr>
<td></td>
<td>에너지 및 공간계획을 통한 시설물 성능 최적화</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3차원 모델링</th>
<th>환경 정보</th>
</tr>
</thead>
<tbody>
<tr>
<td>모델 검토 소프트웨어</td>
<td></td>
</tr>
<tr>
<td>협업 도구 및 활용 교육</td>
<td></td>
</tr>
</tbody>
</table>
| 설계 점검 | • 설계 품질에 대한 점검 효율성 개선
 • 설계 대한 점검 다양성 및 후속 절차 효율성 개선
 • 시공오차 등을 고려한 간섭점검
 • 가상공간에서 시설물 미관검토 및 배치 검토
 • 설계단계의 의사소통 효율화 |
|---------------------------------|
| 공정 계획
(4D 모델링) | • 사업 참여자들의 공정이해도 증진 및 핵심 공정 파악
 • 대안 공정별 실시간 평가
 • 인력, 장비, 재료 수급을 동시에 검토하여 공기 및 비용 관리
 • 작업 공간 중복 사전 해소
 • 민원 대응
 • 사업 진행 실시간 모니터링 |
| 원가 계산 | • 주요수량의 정확한 산정 및 설계 변경시 신속한 점검
 • 설계 절차 진행시 목표 사업비 관리 개선
 • 개선된 사업 및 공사 요소들의 시각적 표현을 통한 원가계산
 • 발주자의 의사결정 지원
 • 설계 대안 점검 다양성 및 실질적인 VE 검토
 • 원가 계산 생산성 중대 |
| 현황 모델링 | • 사업부지 및 기존 시설물 모델링을 통한 문서화
 • 3차원 설계 조정작업을 위한 모델 활용
 • 기존 시설물 현황 및 상태 디지털화
 • 위치 정보 제공 |

- 3차원 모델링
- 설계 점검 소프트웨어
- 협업을 위한 절차 및 소프트웨어
- 3차원 모델링
- 공정관리 소프트웨어
- 4D 모델링 소프트웨어
- 모델 기반 전략 소프트웨어
- 3차원 모델링
- 비용 데이터
- 3차원 레이저스캐닝
- 포인트클라우드 기반 역설계 기술
[5] 사업 활용 방안 및 성과물

<table>
<thead>
<tr>
<th>활용방안</th>
<th>적용 공종</th>
<th>상세수준 및 정보요구사항</th>
</tr>
</thead>
<tbody>
<tr>
<td>예방적 유지관리</td>
<td></td>
<td></td>
</tr>
<tr>
<td>자산 관리</td>
<td></td>
<td></td>
</tr>
<tr>
<td>공간관리</td>
<td></td>
<td></td>
</tr>
<tr>
<td>재난 관리</td>
<td></td>
<td></td>
</tr>
<tr>
<td>이력 모델링</td>
<td></td>
<td></td>
</tr>
<tr>
<td>가상 복원</td>
<td></td>
<td></td>
</tr>
<tr>
<td>디지털 제작</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3차원 공사관리 및 계획

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3차원 간섭 조정</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3차원 모델링</td>
<td></td>
<td></td>
</tr>
<tr>
<td>공학적 해석</td>
<td></td>
<td></td>
</tr>
<tr>
<td>설계 검토</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

공정 계획 (4D 모델링)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>건적</td>
<td></td>
<td></td>
</tr>
<tr>
<td>현황 모델링</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[6] BIM 성과물 작성자 및 권한 설정

각 BIM 성과물의 작성을 위한 소프트웨어와 파일 명칭 규칙, 성과물의 모델 구조를 설명

<table>
<thead>
<tr>
<th>BIM 성과물</th>
<th>소프트웨어</th>
<th>파일명칭 규칙</th>
<th>모델 구조</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
[7] BIM 성과물별 모델 요소
상세 정도와 각 모델이 포함해야 하는 속성에 대한 정의

- 구조 BIM 요소 (사업 성격에 따라 필요한 구조요소를 사업자가 추가 정의)

<table>
<thead>
<tr>
<th>요소</th>
<th>다른 영역에서 필요로 하는 요소와 설계변수</th>
</tr>
</thead>
<tbody>
<tr>
<td>파일, 파일캡, 타이를 포함한 기초</td>
<td></td>
</tr>
<tr>
<td>다이아프램 벽체와 옮벽</td>
<td></td>
</tr>
<tr>
<td>보</td>
<td></td>
</tr>
<tr>
<td>기둥</td>
<td></td>
</tr>
<tr>
<td>벽체</td>
<td></td>
</tr>
<tr>
<td>바닥판</td>
<td></td>
</tr>
<tr>
<td>가시설</td>
<td></td>
</tr>
<tr>
<td>콘크리트 구조물 철근 상세</td>
<td></td>
</tr>
<tr>
<td>브레이싱을 포함한 강구조 프레임</td>
<td></td>
</tr>
<tr>
<td>연결상세</td>
<td></td>
</tr>
<tr>
<td>기타</td>
<td></td>
</tr>
</tbody>
</table>

- 토목 BIM 요소

<table>
<thead>
<tr>
<th>구분</th>
<th>요소</th>
<th>다른 영역에서 필요로 하는 요소와 설계변수</th>
</tr>
</thead>
<tbody>
<tr>
<td>DTM</td>
<td>현장 조건과 시설물 위치를 보여줄 수 있는 3차원 면 모델 (기존 보도, 도로, 램프 등을 포함)</td>
<td></td>
</tr>
<tr>
<td>지형 보고서</td>
<td>지질조사 보고서 (BIM 모델은 토공에 대한 특별한 요구사항이 있는 경우에만 작성)</td>
<td></td>
</tr>
<tr>
<td>지상물 및 기존시설물 모델</td>
<td>기존 지상물 및 시설물이 사업과의 연계성이 있는 것</td>
<td></td>
</tr>
<tr>
<td>기타</td>
<td>모델에 표현될 필요가 있다고 판단되는 기타 시설물</td>
<td></td>
</tr>
</tbody>
</table>
[8] BIM 모델 작성, 배포 및 협업 절차
BIM 모델 기반의 조정 및 협업 절차, 성과물 배포 이전에 BIM 작성이에 의한 품질 검토

- 품질 관리 (다음 사항들에 대한 자체 검토 계획)

<table>
<thead>
<tr>
<th>구조 상세설계 BIM 모델</th>
<th>기타 시설 상세설계 BIM 모델</th>
<th>기본, 상세, 시공, 준공 단계의 통합 모델</th>
</tr>
</thead>
<tbody>
<tr>
<td>- 버전에 맞는 BIM</td>
<td>- 버전에 맞는 BIM</td>
<td>- 합의된 모델</td>
</tr>
<tr>
<td>- 사전에 정의된 모델 구조</td>
<td>- 사전에 정의된 모델 구조</td>
<td>- 동일한 설계단계의 모델</td>
</tr>
<tr>
<td>- 요소 구성</td>
<td>- BIM 모델 작성을 위한 객체의 적절성</td>
<td>- 정확한 좌표계 내에 모델</td>
</tr>
<tr>
<td>- BIM 모델 작성을 위한 객체의 적절성</td>
<td>- 시설별 색 구성</td>
<td>- 위치 여부</td>
</tr>
<tr>
<td>- 추가되거나 중복된 요소 작성 여부</td>
<td>- 추가되거나 중복된 요소 작성 여부</td>
<td>- 모델간 간섭 해소 여부</td>
</tr>
<tr>
<td>- 객체간 간섭 여부</td>
<td>- 객체간 간섭 여부</td>
<td></td>
</tr>
<tr>
<td>- 분야간 간섭 여부</td>
<td>- 분야간 간섭 여부</td>
<td></td>
</tr>
<tr>
<td>- 부재간 연결부</td>
<td>- 정해진 공간내의 위치 여부</td>
<td></td>
</tr>
<tr>
<td>- 구조물내의 설비 관련 공간 확보 적절성</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[9] 소프트웨어 환경
필요한 소프트웨어 리스트 및 공유 및 협업을 위한 환경 구축 방안 제시
부록 II BIM기반 도로공사정보 분류체계

부록 II 도로분야 작업분류체계(WBS) 코드집

2015. 12.
<table>
<thead>
<tr>
<th>코드</th>
<th>도로사설</th>
<th>코드</th>
<th>공항</th>
<th>시설물명</th>
<th>방향간</th>
<th>항공공간</th>
<th>작업관리단위1</th>
<th>작업관리단위2</th>
</tr>
</thead>
<tbody>
<tr>
<td>F11000</td>
<td>도로</td>
<td>11</td>
<td>도로</td>
<td>F11120</td>
<td>본선</td>
<td>S31100</td>
<td>공통</td>
<td>S16180NN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F11430</td>
<td>K/IC</td>
<td>S31101</td>
<td>상행</td>
<td>F11430NN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F11490</td>
<td>기타도로</td>
<td>S31102</td>
<td>하행</td>
<td>F11490NN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>베수공</td>
<td>F11120</td>
<td>본선</td>
<td>S31100</td>
<td>공통</td>
<td>S16180NN</td>
<td>구간명</td>
<td>E11440NN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F11430</td>
<td>K/IC</td>
<td>S31101</td>
<td>상행</td>
<td>F11430NN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F11490</td>
<td>기타도로</td>
<td>S31102</td>
<td>하행</td>
<td>F11490NN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>포장공</td>
<td>F11120</td>
<td>본선</td>
<td>S31100</td>
<td>공통</td>
<td>S16180NN</td>
<td>구간명</td>
<td>S1611001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F11480</td>
<td>K/IC</td>
<td>S31101</td>
<td>상행</td>
<td>F11480NN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F11490</td>
<td>기타도로</td>
<td>S31102</td>
<td>하행</td>
<td>F11490NN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>부대공</td>
<td>F11120</td>
<td>본선</td>
<td>S31100</td>
<td>공통</td>
<td>S16180NN</td>
<td>구간명</td>
<td>E11700</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F11430</td>
<td>K/IC</td>
<td>S31101</td>
<td>상행</td>
<td>F11430NN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F11490</td>
<td>기타도로</td>
<td>S31102</td>
<td>하행</td>
<td>F11490NN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F19000</td>
<td>구후실</td>
<td>21</td>
<td>구후실</td>
<td>F11900NN</td>
<td>지하차도명</td>
<td>S31100</td>
<td>공통</td>
<td>S16180NN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F11910</td>
<td>K/IC</td>
<td>S31101</td>
<td>상행</td>
<td>F11910NN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>F11950</td>
<td>K/IC</td>
<td>S31102</td>
<td>하행</td>
<td>F11950NN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>교통공</td>
<td>F15101NN</td>
<td>교통공</td>
<td>S31100</td>
<td>공통</td>
<td>E13200</td>
<td>상부공</td>
<td>S16140NN</td>
</tr>
<tr>
<td>코드</td>
<td>토로사항</td>
<td>코드</td>
<td>공통</td>
<td>시설물</td>
<td>방향공간</td>
<td>확장공간</td>
<td>작업관리단위1</td>
<td>작업관리단위2</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>-----</td>
<td>------</td>
<td>--------</td>
<td>---------</td>
<td>---------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>S31101</td>
<td>상행</td>
<td>E13010</td>
<td>입수슬래브</td>
<td>01</td>
<td>입수슬래브</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S31102</td>
<td>하행</td>
<td>E13000</td>
<td>상부기타</td>
<td>91</td>
<td>상부기타</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S31100</td>
<td>공통</td>
<td>E13100</td>
<td>하부공</td>
<td>01</td>
<td>하부기초</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S31101</td>
<td>상행</td>
<td>E13010</td>
<td>하부기초</td>
<td>02</td>
<td>하부기초</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S31102</td>
<td>하행</td>
<td>E13010</td>
<td>하부기초</td>
<td>03</td>
<td>기초</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>벽체</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>91</td>
<td>교각기타</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E13100NN</td>
<td>교각 N</td>
<td>01</td>
<td>교각기초</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>하부기초</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>기초</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>기둥</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>교각기타</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E13900</td>
<td>교량부대공</td>
<td>01</td>
<td>교량부대공</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F15102NN</td>
<td>교량부대(2단계)</td>
<td>S31100</td>
<td>공통</td>
<td>E13200</td>
<td>상부공</td>
<td>S16140NN</td>
<td>SEG N</td>
<td>01</td>
</tr>
<tr>
<td>02</td>
<td>교량부대공</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>기초</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>기둥</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>교각기타</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E13100NN</td>
<td>교각 N</td>
<td>01</td>
<td>교각기초</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>하부기초</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>기초</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>기둥</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>교각기타</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E13900</td>
<td>교량부대공</td>
<td>01</td>
<td>교량부대공</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F15103NN</td>
<td>교량부대(2단계)</td>
<td>S31100</td>
<td>공통</td>
<td>E13200</td>
<td>상부공</td>
<td>S16140NN</td>
<td>SEG N</td>
<td>01</td>
</tr>
<tr>
<td>02</td>
<td>교량부대공</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>기초</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>기둥</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>교각기타</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E13100NN</td>
<td>교각 N</td>
<td>01</td>
<td>교각기초</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>하부기초</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>기초</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>기둥</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>교각기타</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E13900</td>
<td>교량부대공</td>
<td>01</td>
<td>교량부대공</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F15104NN</td>
<td>교량부대(2단계)</td>
<td>S31100</td>
<td>공통</td>
<td>E13200</td>
<td>상부공</td>
<td>S16140NN</td>
<td>SEG N</td>
<td>01</td>
</tr>
<tr>
<td>02</td>
<td>교량부대공</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>기초</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>기둥</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>교각기타</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E13900</td>
<td>교량부대공</td>
<td>01</td>
<td>교량부대공</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>교량부대공</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>기초</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>기둥</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>교각기타</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E13100NN</td>
<td>교각 N</td>
<td>01</td>
<td>교각기초</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>하부기초</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>기초</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>기둥</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>교각기타</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E13900</td>
<td>교량부대공</td>
<td>01</td>
<td>교량부대공</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>교량부대공</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>기초</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>기둥</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>교각기타</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>코드</td>
<td>도로시설</td>
<td>코드</td>
<td>공통</td>
<td>시설물</td>
<td>방향공간</td>
<td>학정공간</td>
<td>작업관리단위1</td>
<td>작업관리단위2</td>
</tr>
<tr>
<td>----</td>
<td>--------</td>
<td>----</td>
<td>------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>코드</td>
<td>코드</td>
<td>코드 2</td>
<td>코드 3</td>
</tr>
<tr>
<td>F15105NN</td>
<td>시설공급역(AA)</td>
<td>S31100</td>
<td>공통</td>
<td>E13200</td>
<td>상부공</td>
<td>S16140NN</td>
<td>SEG N</td>
<td>01</td>
</tr>
</tbody>
</table>
| | | | | | | E13240 | 기지 | 01 | 라이온즈
| S31101 | 상행 | E13610 | 접속로/레스토랑 | E13600 | 상부공 | 01 | 상부공 | 01 | 상부공 |
| S31102 | 하행 | E13100 | 공통 | E13100 | 하부공 | E13100 | 교대 N | 01 | 교대 |
| S31101 | 상행 | E13100 | 하부공 | E13100 | 교대 N | 01 | 교대 |
| S31102 | 하행 | | | | | | | | |
| F15106NN | 시설공급역(BB) | S31100 | 공통 | E13200 | 상부공 | S16140NN | SEG N | 01 | 슈퍼마켓 |
| | | | | | | E13240 | 기지 | 01 | 라이온즈
| S31101 | 상행 | E13610 | 접속로/레스토랑 | E13600 | 상부공 | 01 | 상부공 | 01 | 상부공 |
| S31102 | 하행 | E13100 | 공통 | E13100 | 하부공 | E13100 | 교대 N | 01 | 교대 |
| S31101 | 상행 | E13100 | 하부공 | E13100 | 교대 N | 01 | 교대 |
| S31102 | 하행 | | | | | | | | |
| F15107NN | 시설공급역(PCM) | S31100 | 공통 | E13200 | 상부공 | S16140NN | SEG N | 01 | 슈퍼마켓 |
| | | | | | | E13240 | 기지 | 01 | 라이온즈
| S31101 | 상행 | E13610 | 접속로/레스토랑 | E13600 | 상부공 | 01 | 상부공 | 01 | 상부공 | | |
| S31102 | 하행 | E13100 | 공통 | E13100 | 하부공 | E13100 | 교대 N | 01 | 교대 |
| S31101 | 상행 | E13100 | 하부공 | E13100 | 교대 N | 01 | 교대 |
| S31102 | 하행 | | | | | | | | |
| 23 | 태평검 | F16110NN | 시설공급역(JJ) | S31300 | 공통 | E13400 | 개비부 | E1490001 | 시설부 | 01 | 교대 |
| | | | | | | E13400 | 기지 | 01 | 라이온즈
<p>| S31101 | 상행 | E1490001 | 개비부 | E1490001 | 시설부 | 01 | 교대 |
| S31102 | 하행 | E1490001 | 개비부 | E1490001 | 시설부 | 01 | 교대 |</p>
<table>
<thead>
<tr>
<th>코드</th>
<th>도로시설</th>
<th>코드</th>
<th>시설물</th>
<th>방향공간</th>
<th>확장공간</th>
<th>작업관리단위1</th>
<th>작업관리단위2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>코드</td>
<td>분류1</td>
<td>코드</td>
<td>분류2</td>
</tr>
<tr>
<td>S31100</td>
<td>공통</td>
<td>E14200</td>
<td>분류부</td>
<td>E14210</td>
<td>공작</td>
<td>00</td>
<td>공작 및 바닥</td>
</tr>
<tr>
<td>S31101</td>
<td>상행</td>
<td></td>
<td>E14220</td>
<td>지하공</td>
<td>00</td>
<td>지하공</td>
<td>00</td>
</tr>
<tr>
<td>S31102</td>
<td>하행</td>
<td></td>
<td>E14230</td>
<td>지하공</td>
<td>00</td>
<td>지하공</td>
<td>00</td>
</tr>
<tr>
<td>S31100</td>
<td>공통</td>
<td>E14400</td>
<td>하행공 통</td>
<td>E14420</td>
<td>하행공 통</td>
<td>00</td>
<td>하행공 통</td>
</tr>
<tr>
<td>S31101</td>
<td>상행</td>
<td></td>
<td>E14430</td>
<td>우회공통</td>
<td>00</td>
<td>우회공통</td>
<td>00</td>
</tr>
<tr>
<td>S31102</td>
<td>하행</td>
<td></td>
<td>E14450</td>
<td>수직구</td>
<td>00</td>
<td>수직구</td>
<td>00</td>
</tr>
<tr>
<td>F11900</td>
<td>기타시설</td>
<td>91</td>
<td>기타시설공</td>
<td>F11600</td>
<td>도로관리시설</td>
<td>00</td>
<td>도로관리시설</td>
</tr>
<tr>
<td>S31100</td>
<td>공통</td>
<td>F11600NN</td>
<td>도로관리시설</td>
<td>W99000</td>
<td>관측</td>
<td>00</td>
<td>관측</td>
</tr>
<tr>
<td>S31101</td>
<td>상행</td>
<td></td>
<td>W61000</td>
<td>기계</td>
<td>00</td>
<td>기계</td>
<td>00</td>
</tr>
<tr>
<td>S31102</td>
<td>하행</td>
<td></td>
<td>W86000</td>
<td>전기</td>
<td>00</td>
<td>전기</td>
<td>00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>W84000</td>
<td>통신</td>
<td>00</td>
<td>통신</td>
<td>00</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>W59000</td>
<td>조명</td>
<td>00</td>
<td>조명</td>
<td>00</td>
</tr>
</tbody>
</table>